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Abstract—A Loss of Heterozygosity (LOH) event occurs when, by the laws of Mendelian inheritance, an individual should be
heterozygote at a given site but, due to a deletion polymorphism, is not. Deletions play an important role in human disease and
their detection could provide fundamental insights for the development of new diagnostics and treatments. In this article we investigate
the Parsimonious Loss of Heterozygosity Problem (PLOHP), i.e., the problem of partitioning suspected polymorphisms from a set of
individuals into a minimum number of deletion areas. Specifically, we generalize Halldórsson et al.’ work by providing a more general
formulation of the PLOHP and by showing how one can incorporate different recombination rates and prior knowledge about the
locations of deletions. Moreover, we show that the PLOHP can be formulated as a specific version of the clique partition problem in
a particular class of graphs called undirected catch-point interval graphs and we prove its general NP-hardness. Finally, we provide
a state-of-the-art integer programming formulation and strengthening valid inequalities to exactly solve real instances of the PLOHP
containing up to 9000 individuals and 3000 SNPs. Our results give perspectives on the mathematics of the PLOHP and suggest new
directions on the development of future efficient exact solution approaches.
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1 INTRODUCTION

THE recent completion of the Hap Map project [1] has
shown that any two copies of the human genome

differ from one another by approximately 0.1% of nu-
cleotide sites, i.e., one variant per 1000 nucleotides on
average [2], [3], [4], [5]. The most common variants,
called Single Nucleotide Polymorphisms (SNPs, see Figure
1), together with the recombination process, constitute
the predominant form of human variation [6], [7], [8]. A
large number of other types of variations exist in nature,
including insertions, inversions, translocations. One type
of variation being deletions, which occur when a subse-
quence of the human genome is present in a reference
genome but is not in the genome of an individual being
analyzed.

When the genotypes of a child and its two parents
are known a deletion polymorphism may be observed
as a Loss of Heterozygosity (LOH) event on the child
chromosome. Specifically, the laws of Mendelian inheri-
tance dictate that each individual inherits one copy of a
chromosome from the father and one from the mother.
Hence, for a given SNP, an individual can be either
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homozygous, i.e., the nucleotides of the parental DNA
strands are equal, or heterozygous, i.e., the nucleotides
of the parental DNA strands are different. For example,
the first individual in Figure 1 is homozygous at the
first SNP and heterozygous at the second SNP. When
a deletion polymorphism occurs, an individual carries
only a single copy of the chromosomal segment while
the other is missing. As an example, the first individual
in Figure 1 carries a deletion at the third SNP of the
considered chromosome region (denoted by the symbol
‘-’). If the deletion is de novo, the lack of information
concerns only the individual and not the respective
parents. Otherwise, the deletion is said to be inherited
i.e., passed from one of the two parents to the child.
If the deletion event modifies the heterozygosity of an
individual at a given site of a chromosomal region then
we say that a LOH event occurred at that site.

Deletions may have a negative impact on the health
of an individual and may give rise to several hu-
man diseases. For example, recent studies showed that
schizophrenia [9], multiple sclerosis [10], Alzheimer [11],
type I diabetes [12], obesity [13], and some cardiovas-
cular diseases [14], [15], [16] are associated with large
recurrent deletion events occurred across the genomes
of the affected individuals [17]. A shared hope in the
scientific community is that detecting deletions across
the genome of individuals could be of fundamental
assistance for the diagnosis and the treatment of certain
human diseases, hence considerable research efforts have
been dedicated to this task in recent years [1].

A natural approach to perform the task of finding dele-
tions consists of comparing the genomes of a given pop-
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Fig. 1. Any two copies of the human genome differ from one another by approximatively 0.1% of nucleotide sites. In this example,
most of the DNA sequence is identical in a given chromosome region from a set of individuals, apart from three variant sites. These
sites are called Single Nucleotide Polymorphisms (SNPs). The symbol ‘-’ represents a deletion, i.e., a lack of a nucleotide.

ulation of affected individuals with the genomes from a
population of unaffected ones. However, the genomes of
the individuals are generally not readily available and
even if they were, the comparison process would be
laborious, time consuming and cost-prohibitive due to
the large amount of data to analyze. Hence, the use of
predictive models is usually considered as an alternative
to the experimental approach [18]. In this context, a num-
ber of methods for the detection of deletions have been
suggested in the literature, including tiling arrays [19]
and high throughput sequencing [20], [21].

In this paper we focus on detecting germline deletions
from genotype data of an offspring and his parents.
These data may be derived from SNP arrays, which
have been used for genome-wide association studies at a
number of laboratories, see e.g., [10], [22], [23] and [24].
Somatic mutations might also be detected in a similar
framework to the one presented here, given genotypes
from multiple tissues of the individual being studied.

It is worth noting that detecting deletions from geno-
type data may not be straightforward due to the limit
of current genotyping technology and the presence of
uncertainty in the genotyping process. In fact, current
SNP genotyping technology is not able to discern easily
the difference between a homozygous site and a deletion,
hence the output will always be a homozygous SNP even
if the true genotype of the individual may carry only a
single copy of the genotype. Moreover, even if a deletion
polymorphism were observed in molecular data, such
event could be due either to the presence of real deletions

or to genotyping errors, i.e., misreadings caused by the
genotyping technology [25]. In this article we address
these major limitations. Specifically, our work is an ex-
tension of one of the problems presented in Halldórsson
et al. [10], which dealt with the problem of detecting
deletions as well as the problem of determining hap-
lotypes from genotypes. Here, we extend their work on
deletions and present a more general predictive model
able to incorporate prior knowledge about the locations
of deletions in the human genome and the probability of
genotyping error. We show that the problem of detecting
deletions from genotype data can be formulated as a
specific version of the clique partition problem in a
particular class of graphs called undirected catch-point
interval graphs. We prove that this problem is NP-hard in
general and we provide a methodology to solve it based
on Integer Programming (IP). Specifically, we present
an IP formulation and strengthening valid inequalities
to reduce the solution space. We then demonstrate
through a series of empirical tests on real and artificial
data that this formulation is often characterized by a
small gap between the optimal solution and its non-
integral linear programming bound relative to the prior
art as well as often substantially faster processing of
very large instances of the problem containing up to
9000 individuals and 3000 SNPs. The work thus gives
perspective on the mathematics of detecting deletions
from genotype data, provides methodology suitable for
provably optimal solution of hard real instances that
resist all prior approaches, and suggests new directions
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Fig. 3. An example of three trios having 10 SNPs each.

on the development of future efficient exact solution
approaches.

2 NOTATION AND PROBLEM FORMULATION

In this section, we state the problem of detecting dele-
tions from genotype data in terms of an optimization
problem. To this end, consider a trio t, i.e., a set of two
parents and an offspring, and let s denote a SNP geno-
typed in t. Then, one of the following three situations
may occur:

1) The SNP s can be Inconsistent with a Loss of Het-
erozygosity (ILOH), a situation that occurs when the
child is heterozygous. In this case different alleles
must have been inherited from each parent. For
example, this is the case in the first highlighted
column of the sequences of the trio shown in Figure
2.

2) The SNP s can be Consistent with a Loss of Het-
erozygosity (CLOH), a situation that occurs when
a deletion may (but needs not) be introduced to
explain the trio’s inheritance pattern. For example,
by referring to the second highlighted column of
the sequences of the trio shown in Figure 2, the
SNP of the child could be explained by means of
a deletion of the paternal pattern.

3) The SNP s can show Evidence of a Loss of Het-
erozygosity (ELOH), a situation that occurs when a
deletion or a genotyping error are the only possible
explanation for the trio inheritance pattern. For ex-
ample, by referring to the third highlighted column
of the sequences of the trio shown in Figure 2, the
SNP of the child can be explained only by means
of a deletion of the maternal pattern.

Using the definitions described above, a trio geno-
typed at m SNPs can be encoded as a string of length
m over an alphabet Σ = {1, 0, X}, where ‘1’ codes
for a SNP inconsistent with having a loss of heterozy-
gosity; ‘0’ codes for a SNP consistent with a loss of
heterozygosity; and ‘X’ codes for a SNP showing evi-
dence of loss of heterozygosity [10]. For example, the
string t = 〈X100X0X010〉 in Figure 3 represents a trio
genotyped at 10 SNPs, thereof 5 consistent with having
a loss of heterozygosity, 3 showing evidence of a loss of
heterozygosity, and 2 inconsistent with having a loss of
heterozygosity.

Let SNP denote a set of m SNPs, and T = {tp} as a
set of n trios genotyped at the m SNPs in SNP . Given a
trio tp ∈ T , let tps denote both the value and the position
of s-th SNP in tp. Further, let TX = {tps ∈ T ×SNP : tps =
‘X’, tp ∈ T , s ∈ SNP}.

Given a trio/SNP pair tps ∈ TX , we denote ltps and rtps
as the positions of the closest ILOH SNPs on tp on the left
and on the right of tps , respectively, and we set lps = ltps+1
and rps = rtps−1. Let lps and rps be the left and right margins
of tps , respectively. We set lps = 1 if there is no ILOH SNP
on the left of tps and rps = m if there is no ILOH SNP on
the right of tps , respectively. For example, by considering
the SNP t15 in Figure 3 we have that l15 = 3 and r15 = 8.
Similarly, by considering the SNP t33 in Figure 3 we have
that l33 = 1 and r33 = 10. Finally, l11 = r11 = 1.

Given a trio tp ∈ T , we define an interval to be any
contiguous subset of SNPs in tp that does not contain
ILOH SNPs. Consider two distinct trio/SNP pairs in
TX , say tps1 and tqs2 . We say that tps1 and tqs2 are mutually
compatible with a deletion if both the position of tqs2 falls
inside the interval [lps1 , r

p
s1 ] and the position of tps1 falls

inside the interval [lqs2 , r
q
s2 ]. In which case we also say

that the corresponding intervals [lps1 , r
p
s1 ] and [lqs2 , r

q
s2 ] are

mutually compatible. For example, t33 and t15 are mutually
compatible with a deletion, in fact the position of the
SNP t33 falls inside the substring delimited by the SNPs
at positions l15 = 3 and r15 = 8 and vice-versa the position
of the SNP t51 falls inside the substring delimited by the
SNPs at positions l33 = 1 and r33 = 10. Finally, it is easy to
realize that the SNP t11 is not compatible with any other
as it does not fall inside any other interval induced by
a trio/SNP pair in TX .

Consider a subset Q of trio/SNP pairs in TX and their
corresponding intervals. We define a Region Compatible
with a Deletion (RCD) as any subset S ⊆ Q of mutually
compatible intervals [lps , r

p
s ], for all tps ∈ Q. As an exam-

ple, the SNPs t15, t17 and t28 in Figure 3 form a RCD, as
their corresponding intervals are mutually compatible.

RCDs play a central role in detecting deletions in the
human genome. In fact, as genotyping errors are usually
sporadic during the genotyping phase, high concentra-
tions of CLOH or ELOH SNPs located in specific areas of
T are likely to indicate the presence of true underlying
deletions. As deletion events are rare in nature, the
number of such areas can be expected to be small.
Halldórsson et al. [10] proposed to exploit these insights
to detect deletions in T . Specifically, denoted R and E as
the set of RCDs and the set of genotyping errors in T ,
respectively, and h(ρ) and g(η) as the costs of detecting
a RCD ρ ∈ R and a genotyping error η ∈ E , respectively,
the authors proposed to solve the following optimization
problem to accomplish the task:

Problem. The Parsimonious Loss of Heterozygosity
Problem (PLOHP). Given a set T of n trios having m SNP
each, minimize the overall cost

χ =
∑
ρ∈R

h(ρ) +
∑
η∈E

g(η)
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Fig. 2. An example of a trio and their genotypes; A set of SNPs in the genomes of two parents and their offspring. The first
highlighted column in the molecular sequence of the trio represents a SNP inconsistent with a loss of heterozygosity; the second
highlighted column represents a SNP consistent with a loss of heterozygosity; the third highlighted column represents a SNP
showing an evidence of a loss of heterozygosity.

such that each entry in TX is either compatible with a deletion
or is classified as a genotyping error.

Halldórsson et al. [10] assumed that functions h(ρ) and
g(η) always assign the same cost to each ρ ∈ R and
η ∈ E , respectively. We relax this aspect and generalize
the PLOHP to the case where we can have different costs
depending on the SNP and deletion being considered. In
fact, genotyping technologies are usually characterized
by a high variability in the quality of the SNP genotypes
produced [26]. A common method for dealing with these
is to remove from analysis markers that show many
ELOH events [22], this method however may remove
most of the signal from the data in the preprocessing
step. Similarly, different regions in the genome may have
different propensity for carrying deletions [20]. This fact
justifies the need to weigh the different SNPs based on
their probability of being a genotyping error. Hence, in
what follows we shall assume that functions h and g are
generic functions.

The PLOHP is based on the parsimony principle [27].
This fact implies that the optimal solutions to the prob-
lem provide estimations of deletion events that, in the
worst case, are lower bounds on the overall number of
true deletion events occurred in the set of trios being
considered [28], [29]. Halldórsson et al. [10] conjectured
the general NP-hardness of the PLOHP but did not
investigate the issue any further. In the next sections we
shall address this major issue and provide an algorithm
able to exactly solve practical-use instances of the prob-

Fig. 4. An interval graph can be transformed into a LOHG by
converting each interval [lk, rk] in Figure (a) into the pointed
interval ([1, rk], lk) as shown in Figure (b). The symbol ‘x’
represents the position of the k-th lk point in the corresponding
interval.

lem.
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2.1 The LOH graph

We revisit the graphs defined in [10], which we shall
term LOH Graphs and turn out useful in transforming
the PLOHP into a particular version of the Minimum
Clique Partition Problem (MCPP) [30].

In order to characterize such a class of graphs, consider
a set of trios T and denote Ik = ([lk, rk], xk) as the
interval induced by the k-th trio/SNP pair in TX , where
xk denote the position of the SNP having value ‘X’ in the
interval and lk and rk denote the left and right margins
of xk, respectively. Moreover, denote I as the set of
intervals induced by T and set ν = |I|. Consider a graph
Gπ having a vertex for each interval Ik, k = 1, . . . , |TX |,
and an edge between two vertices if a given intersection
rule π is satisfied. If π concerns just the presence/absence
of an intersection between two distinct intervals then Gπ
is a classical interval graph (see [31]). If the intersection
rule π also involves the position xk of the SNP having
value ‘X’ in the interval then Gπ is a catch-point interval
graph (see [32]). If π concerns the presence/absence of
mutual compatibility between two distinct intervals then
Gπ then becomes the symmetric restriction of a catch-
point interval graph which is called undirected catch-point
interval graphs or, more simply, a LOH Graph (LOHG).

The class of the LOHGs can be seen as a generalization
of the class of the interval graphs. In fact, the following
proposition holds:

Proposition 1. The class of the LOHGs strictly contains the
class of the interval graphs.

Proof: A generic interval [lk, rk] of an interval graph
is completely characterized by the left and right margins
lk and rk, respectively. In contrast, a generic interval
of a LOHG G is completely characterized by the pair
([lk, rk], xk), i.e., by an interval and a point belonging
to that interval. Now, denote l̂ = mink∈{1,2,...,ν} lk and
observe that we can transform any interval graph GI into
a LOHG G by mapping each interval [lk, rk] of GI into
the interval ([l̂, rk], lk) of G (see e.g., Figure 4). Hence,
any interval graph is also a LOHG. To complete the
proof, it is sufficient to show that the converse is not true.
In fact, the class of interval graphs belongs to the class of
the perfect graphs [33] which in turn implies that interval
graphs do not contain odd cycles of length greater than
or equal to 5 [34]. In contrast, the class of the LOHGs
may also include such cycles, as shown e.g., in Figure 5.

Given an instance of the PLOHP and its corresponding
LOHG, G, we observe that by definition, the RCDs in T
correspond to cliques in G, i.e., to complete subgraphs
of G. We also recall that a maximal clique of a graph is
a clique that is not a subset of a larger clique and a
maximum clique is a clique of maximum size. Then, the
following result holds for LOHGs:

Proposition 2. Let G be a LOHG. Then G contains at most
ν(ν − 1)/2 maximal cliques.

Fig. 5. A counter example showing that in general a LOHG is
not a perfect graph. In fact, the set of pointed intervals shown in
the subfigure (a) induces the odd cycle of length 5 shown in the
subfigure (b).

Proof: Take any set of vertices that forms a maximal
clique C in G and consider the corresponding set of
pointed intervals in I. Let vl and vr be the nodes whose
corresponding ‘x’ values xvl and xvr are the furthest to
the left and to the right, respectively, in the set of pointed
intervals induced by C. Each vertex v in the clique is
connected to these two vertices and its corresponding
pointed interval is such that xv ∈ [xvl , xvr ] ⊆ [lv, rv].
Hence, a clique can be defined by the leftmost and
rightmost vertices, respectively, and as consequence G
contains at most ν(ν − 1)/2 maximal cliques.

We note that this implies that the maximum clique
problem can be solved in polynomial time in a LOH
Graph. Enumerating all cliques can be performed in
polynomial time by choosing all possible distinct pairs of
values xvl and xvr in I and, for each of them, by listing
the pointed intervals such that xv ∈ [xvl , xvr ] ⊆ [lv, rv].

In the Section 4 we shall exploit Proposition 2 to
develop an exact approach to solution of the PLOHP
based on integer programming.

3 THE COMPLEXITY OF THE PLOHP
Given an instance of the PLOHP and its corresponding
LOHG, G, we note that in any optimal solution to the
instance, a genotyping error will always be a SNP that
does not belong to any RCD selected. Hence, in any
optimal solution to the instance, a genotyping error will
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correspond to a clique of G having cardinality 1. This
insight allows us to consider the PLOHP as an instance
of the MCPP in a particular class of graphs [30]. The
MCPP is known to be NP-hard in general [30]; in this
section we will show that the MCPP (i) remains hard
even when restricted to the class of the LOHGs and (ii)
can be solved in polynomial time if the LOHG and the
cost functions h and g satisfy some specific properties.
Before proceeding, we shall introduce some notation that
will prove useful throughout the section.

We say that a set function f is zero-cardinal if f(∅) = 0;
non-negative if f assumes only non-negative values; and
non-decreasing if f(T ) ≤ f(S) for any T ⊆ S ⊆ V . We say
that f is submodular if it satisfies the following property
[35]:

f(S ∪ {u}) + f(T ) ≤ f(S) + f(T ∪ {u})
∀ T ⊆ S ⊆ V, u ∈ V \ S.

We say that f is a polymatroid rank function if it is zero-
cardinal, non-decreasing, non-negative, and submodular.
Moreover, similarly to [36], we define a value-polymatroid
set function f as a zero-cardinal, non-decreasing, non-
negative set function that satisfies the following prop-
erty:

f(S ∪ {u}) + f(T ) ≤ f(S) + f(T ∪ {u})
∀ S, T ⊆ V : f(S) ≥ f(T ), u ∈ V \ (S ∪ T ).

Note that a value-polymatroid set function is also poly-
matroidal, but the converse is generally not true [36].
Finally, a set function f is size-defined submodular if
there exists a function ψ : [0 . . . |V |] → R+

0 such that
f(S) = ψ(|S|), for any S ⊆ V . As shown in [36], a
size-defined submodular set function f is both value-
polymatroidal and polymatroidal.

Proposition 1 together with the previous definitions
turn out to be useful to investigate the complexity of the
PLOHP. Specifically, denote C(G) the set of cliques of G
and set

f(C) =


0 if C = ∅
g(C) if |C| = 1

h(C) if |C| ≥ 2

∀ C ∈ C(G).

Then, the following proposition holds:

Proposition 3. The decision version of the PLOHP is NP-
complete even when the cost function f is restricted to
polymatroidal set functions.

Proof: The statement follows by observing that the
class of the LOHGs strictly contains the class of interval
graphs and that the minimum clique partition problem
on an interval graph is NP-complete when the cost
function is polymatroidal [36].

In general, it is easy to realize that the decision version
of the PLOHP is NP-complete for any cost function
f(C) = ψ(|C|)σ(C) such that ψ : [0 . . . |V |] → R+

0 and
σ(C) is a generic function on C. In fact, such a case also

includes the rooted-TSP cost function on a tree (see [36])
which is trivially polymatroidal.

Although Proposition 3 states that the decision version
of the PLOHP is in general NP-complete, it is worth
noting that in some special cases the problem can be still
solved in polynomial time. For example, the following
proposition holds:

Proposition 4. Let G = (V,E) be a LOHG and f :
C(G)→ R+

0 a value-polymatroidal cost function. If G is also
an interval graph then it is possible to compute a minimum
cost partition into cliques of G in polynomial time.

Proof: The statement follows from Proposition 1 and
from the fact that the minimum clique partition problem
on an interval graph can be solved in polynomial time
when the cost function is a value-polymatroidal set
function [36].

Proposition 4 turns out useful to show that if G is an
interval graph the PLOHP can be solved in polynomial-
time when the following objective function, introduced
in [10], is used:

fα(C) =


0 if C = ∅
c1 if |C| = 1

c2 if |C| ≥ 2,

∀ C ∈ C(G) (1)

where c1 and c2 are two constants such that 0 < c1 ≤
αc1 < c2 ≤ (α + 1)c1, and α is a positive integer
such that 2 ≤ α ≤ |V | − 1. In fact, in such a case
it is easy to see that the set function fα(C) is size-
defined submodular, hence value-polymatroidal; thus,
if G is an interval graph, by Proposition 4 the PLOHP
can be solved in polynomial time. Moreover, it is worth
noting that the optimal solution to the problem can be
characterized when considering function (1). In fact, the
following proposition holds:

Proposition 5. Consider a graph G = (V,E) and a cost
function fα defined as in (1). Then, there exists a minimum
cost partition into cliques of G, say P ?, such that none of the
cliques in P ? has cardinality greater than 1 and smaller than
α+ 1. Moreover, if P ? contains cliques of cardinality greater
than or equal to α+ 1 then at least one of them is a maximal
clique of G.

Proof: By contradiction, suppose there exists a clique
C ∈ P ? such that 2 ≤ |C| ≤ α. Then, due to the
nature of fα, it is possible to obtain a lower cost partition
into cliques of G by just breaking C into |C| cliques
of cardinality 1. In fact, in such a case we would have
that

∑
v∈C fα({v}) = |C|c1 < c2 = fα(C) ≤ (α + 1)c1.

However, this contradicts the hypothesis that P ? has
minimum cost. Hence, P ? does not contain cliques hav-
ing cardinality between 2 and α. Now, assume that P ?

contains a clique C ∈ P ? such that |C| ≥ α+ 1. Since fα
is non-decreasing we have that fα(C) ≥ fα(T ), for any
T ∈ P ?. If C is not a maximal clique of G then there exists
some t ∈ V \C such that C∪{t} is a clique in G. Note that
t belongs to some T ∈ P ? \ C and that since fα is non-
decreasing, it holds that fα(C) ≥ fα(T ) ≥ fα(T \ {t}).
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Observe also that since fα is α-value-polymatroidal, it
holds that fα(C ∪ {t}) + fα(T \ {t}) ≤ fα(C) + fα(T ).
Hence, it is possible to enlarge C until it becomes a
maximal clique of G without getting worse the cost of
P ?.

4 AN INTEGER PROGRAMMING MODEL FOR
THE PLOHP
The NP-hardness of the PLOHP justifies the devel-
opment of exact and approximate solution approaches
for the problem. In this section we present an integer
programming model for the PLOHP. The algorithm is
guaranteed to return an optimal solution and its time
performance is significantly faster than the current state-
of-the-art exact algorithm described in [10].

To this end, given a vertex v ∈ V , we denote Cv =
{C ∈ C(G) : v ∈ C}. Moreover, we denote yC as a
decision variable equal to 1 if the clique C ∈ C(G) is
selected in the optimal solution to the problem and 0
otherwise. Then, Formulation 1 is a valid formulation
for the PLOHP.

Formulation 1.

min
∑

C∈C(G)

f(C)yC (2a)

s.t.
∑
C∈Cv

yC = 1 ∀ v ∈ V (2b)

yC ∈ {0, 1} ∀ C ∈ C(G). (2c)

Constraints (2b) impose that each vertex v ∈ V belongs
to the clique C ∈ C(G) and constraints (2c) impose the
integrality on variables yC .

Formulation 1 is characterized by an exponential num-
ber of variables and constraints and its linear relax-
ation can be exactly solved by using column gener-
ation techniques. Specifically, observe that a variable
with negative reduced cost in the linear relaxation of
Formulation 1 corresponds to a dual constraint violated
by the current dual solution. Denoted µv as the dual
variables associated with constraints (2b), the dual of the
linear relaxation of Formulation 1, denoted by LP1, is
characterized by the following constraints:∑

v∈V :v∈C
µv ≤ f(C) ∀ C ∈ C(G). (3)

Constraints (3) are violated if there exists a clique Ĉ ∈
C(G) such that

∑
v∈V :v∈C µv > f(C). The existence of

such a clique can be checked in polynomial time by using
Proposition 2 and this in turn implies that the linear
relaxation of LP1 can be solved in polynomial time.

Interestingly, if the cost function f is defined as in (1)
then Formulation 1 can be rewritten as follows. Denote
xv as a decision variable equal to 1 if vertex v ∈ V forms
a clique of cardinality 1 in the optimal solution to the
problem and 0 otherwise. Moreover, denote Ĉ(G) as the
set of all maximal cliques in G having cardinality greater
or equal to 2 and Ĉv(G) = {C ∈ C(G) : v ∈ C, |C| ≥

1

5 64

2 3

Fig. 6. A counter example showing that in general the linear
relaxation of Formulation 2 is not integral.

2}. Then Formulation 2 is a valid formulation for the
PLOHP.

Formulation 2.

min
∑

C∈Ĉ(G)

c2yC +
∑
v∈V

c1xv (4a)

s.t.
∑

C∈Ĉv(G)

yC + xv ≥ 1 ∀ v ∈ V (4b)

xv ∈ {0, 1} ∀ v ∈ V (4c)

yC ∈ {0, 1} ∀ C ∈ Ĉ(G). (4d)

Formulation 2 has the benefit of being polynomial-sized,
due to Proposition 2, hence in principle its relaxation
does not require the use of column generation techniques
to be solved.

Both Formulations 1 and 2 can be strengthened by
adapting appropriately the inequalities described in [37],
[38], [39]. Moreover, additional valid inequalities can be
considered. Specifically, given a pair of distinct vertices
v, w ∈ V , we say that v dominates w if (i) N(w) ⊂ N(v)
and (ii) for any Cv ∈ Ĉv(G) and Cw ∈ Ĉw(G) it holds
that |Cv| > |Cw|. In such a case, we also say that v
is dominating and w is dominated. Dominated vertices
are irrelevant to the clique partitioning of G, since in
any optimal solution to the problem they will always
be identified as cliques of cardinality one. Hence, both
formulations can be strengthened by adding the follow-
ing valid inequalities, whose proof trivially follows from
Proposition 4 and the definition of domination:

Proposition 6. Let v be a dominating vertex in V . Then, the
inequality ∑

C∈Ĉv(G)

yC ≥ 1 (5)

is valid for both Formulations 1 and 2.
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4.1 LOHP polyhedra
Remarkably, in our initial set of computational exper-
iments we carried out on a set of real and random
instances of the problem (see Section 5) we observed
that when using function (1) the linear relaxation of
Formulation 2 is always integral. This result could lead
one to suspect that, due to the particular nature of
function (1) and the structural properties of the class
of the LOHGs, the polyhedron obtained by relaxing the
integrality constraints (4c)-(4d) in Formulation 2 could
coincide with the convex hull of all feasible solutions to
the PLOHP. However, it is possible to provide at least
two counter examples to this conjecture. Specifically,
consider the LOHG shown in Figure 6 and assume, for
ease of exposition, that c1 = 1 and c2 = 2. Then, it is easy
to see that the value of the optimal integral solution for
such a graph is 5 (obtained by taking any triangle and
leaving the other three vertices isolated) while the value
of the linear relaxation of Formulation 2 is 9/2 (obtained
by taking 1/2 of each triangle and 1/2 of each vertex
having degree 2).

Using a similar approach, a second case in which
a fractional linear relaxation of Formulation 2 occurs
is when considering the LOHG on 9 vertices obtained
by merging the following four cliques C1 = {1, 2, 3, 4},
C2 = {2, 5, 6, 7}, C3 = {1, 7, 8, 9}, C4 = {3, 4, 5, 8}. In
fact, by assuming again c1 = 1 and c2 = 2, the value of
the optimal integral solution is 6 while the value of the
linear relaxation is 5, leading to larger a integrality gap
than the previous case. Although these two cases did not
occur in our instances, there is no biological insight to
exclude a-priori their existence in real instances of the
problem. Hence, it may turn out useful to investigate
possible valid inequalities to prevent the occurrence of
at least both cases. To this end, it is worth noting that
the following proposition holds:

Proposition 7. Let G be the LOHG shown in Figure 6 and
denote C as the clique formed by vertices 2, 3 and 5. Let v be
a vertex in V such that Ĉv(G) ∩C 6= ∅. Then, the inequality

xv ≤ yC +
∑

u∈Ĉv(G)∩C

xu (6)

is valid for both Formulations 1 and 2.

Proof: In any feasible solution to the problem vari-
ables y and x can assume value either 0 or 1. If at least
one variable in the right-hand-side of (6) is equal to 1
then the inequality is trivially valid. If all variables in the
right-hand-side of (6) are equal to 0 then the inequality
is still valid. In fact, denote C ′ as the unique maximal
clique containing vertex v, due to constraints (4b) we
have that yC′ = 1, which in turn implies that xv = 0.

It is easy to realize that Proposition 7 also holds for
the second case above considered.

5 EXPERIMENTS
In this section we analyze the performance of our model
in solving instances of the PLOHP. Our experiments

Parameter Site error Interval Probability
sets probability length of an ELOH

Set 1 0.0001 5 0.75
Set 2 0.0001 2 1
Set 3 0.0001 9 0.75
Set 4 0.0001 7 0.50
Set 5 0.0033 9 0.75

TABLE 1
Parameter sets used to generate the first set of random

instances of the PLOHP.

were motivated by three main goals: to measure the
runtime performances of our model in tackling real
instances of the PLOHP, compare the performances of
our model versus Halldórsson et al.’ exact algorithm, and
to allow the exact analysis of datasets potentially larger
than to the ones analyzed in [10]. We emphasize that our
experiments aim simply to evaluate the performances of
our model; we neither attempt to study the efficiency
of our model for LOH estimations nor compare the
accuracy of our model to LOH estimation solvers that
use an objective function that is different from the one
used in [10]. The reader interested in these topics is
referred to [22], [23], [24].

We tested our model on three datasets, namely: a set
of 5 real instances the PLOHP from [10], characterized
by 3000 trios having 3575 SNP each, and two sets of
simulated instances of the PLOHP. The first set of simu-
lated instances were generated using the same procedure
described in [10], with the following list of tunable
parameters: the site error probability i.e., the Mendelian
error added to a set of considered trios according to
a given probability uniformly distributed in [0, 1] and
assumed independent for each site; the interval length
i.e., the exact length of the generated deletion; and
the probability of an ELOH event within the generated
deletion interval, uniformly distributed in [0, 1]. In the
first set of simulated data we used 5 parameters sets
(showed in Table 1). These instances were generated so
as to have a similar structure as real datasets, but with a
higher rate of ELOH sites, as higher rates of ELOH sites
increase the time complexity of the algorithm. For each
possible combination of parameter set, trios number, and
SNP number we created 20 random instances of the
problem by using the Mersenne Twister library [40] as
pseudorandom number generator, for an overall number
of 600 instances of the PLOHP per simulated set.

The second set of simulated instances was constructed
with the sole purpose of determining which problem
characteristics would cause the biggest difficulties for
the algorithm presented. Here we varied the number of
SNPs as 100 and 200 and also varied the number of trios
as 100 and 200. We then fixed the number of sites con-
sistent with LOH sites to 50% and varied the number of
evidence of LOH sites in the set 0.1, 1, 5, 25, 45, 49, 49.9%,
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ELOH Time (sec.)
Probability (%) 100x100 100x200

0.1 0.004±0.001 0.006±0.001
1 0.007±0.001 0.016±0.002
5 0.019±0.013 0.039±0.003
25 0.134±0.018 0.337±0.035
45 2.275±0.213 15.356±4.061
49 14.01±0.771 850.369±247.686

49.9 11.51±0.992 588.161±162.456

ELOH Time (sec.)
Probability (%) 200x100 200x200

0.1 0.005±0.001 0.01±0.002
1 0.013±0.001 0.04±0.005
5 0.036±0.001 0.116±0.009
25 0.279±0.015 0.852±0.104
45 8.444±2.056 70.653±18.177
49 742.231±148.937 2169.624±901.948

49.9 469.526±63.149 1092.288±182.949

TABLE 2
Average computing time required to solve the second set

of random instances of the PLOHP.

letting all other sites be sites being inconsistent with
LOH.

In order to compare the performances of our model
versus Halldórsson et al.’ exact algorithm, we used
function (1) to deal with the random instances of the
PLOHP and used the same coefficients described in [10]
to set the constants c1 and c2. Moreover, in order to
simulate the high variability in the quality of the SNP
genotypes produced by genotyping technologies and the
different propensity of the regions in the genome to carry
deletions, we also considered an alternative objective
function to analyze Halldórsson et al.’ instances. Specifi-
cally, we used the first 3500 recombination rates between
sexes, populations, and individuals [41] (appropriately
rescaled in the interval [0, 1]) relative to chromosome 1 in
order to associate a weight to each SNP of the considered
real instances. Then, we computed the objective function
as

f(C) =


0 if C = ∅
b ∗ αr if |C| = 1

|C|γC if |C| ≥ 2,
∀ C ∈ C(G) (7)

where b is a random number uniformly distributed in
[0, 1], αr equal to the average rate in the considered
chromosomic region, and γC is the average of the re-
combination rates associated to the SNPs involved in the
clique C. Codes and datasets can be downloaded upon
request.

5.1 Numerical results

Figure 7 shows the average runtime performances of
the model when tackling the random instances of the

PLOHP under different parameter settings. Similarly,
Figure 8 shows the average number of nodes by the
integer program when tackling the random instances of
the PLOHP under different parameter sets. We observe
that in a very large fraction of the integer programs no
nodes are expanded, i.e. the problem is a solved at the
root node, implying that a linear relaxation of the integer
program provides optimal integer solutions.

As a general trend, we observed that our model con-
stitutes a very tight formulation for the PLOHP, being
characterized by gaps that are often very close to 0%
and by an average number of branches that is largely
very close to 1. This fact has a positive impact on the
solution times and can be noted both in Figure 7 and
in Figures 8. Specifically, Figure 7, 8 shows that the
random instances of the problem can be solved within 1
hour computing time, and in some cases even within a
minute. In contrast, in no case was the exact algorithm
described in [10] able to tackle such instances within the
considered limit runtime.

In Table 2 we vary the number of ELOH sites in
our dataset. We observe that the solution time of the
instances increases as the number of sites showing
evidence of LOH increases (and the number of sites
inconsistent with LOH decreases), up to the point where
there are very few sites being inconsistent with LOH, at
which point the solution time decreases again.

A closer look to the runtime shows that, independent
of the parameter set considered, the average solution
times appear to grow exponentially with the size of
the instance. The parameter sets influence the average
solution times by determining their scale factor. In gen-
eral, the time required to solve the instances increases
when the length of the deletion is increased and when
the probability of an ELOH decreases. In more detail,
for a fixed generic instance of the PLOHP, we observed
that the vast majority of compute time is taken by the
function that lists all possible maximal cliques in Ĉ(G),
while the solution time of the model tout court is usually
comparatively very short. We observed that when the
instances had a very large number of ELOH sites then
the compute time became large. A large part of this com-
pute time was spent on generating the problem instances
as the number of cliques became quite large. Possibly,
the use of column generation techniques, although not
strictly necessary when dealing e.g., with Formulation 2,
together with the use of graph decomposition methods
and divide and conquer techniques could improve the
solution time of the model and make it less computa-
tionally demanding.

A second interesting observation from the experiments
is the low average number of branches performed by the
model. Specifically, Figures 8 show that the number of
branches is often quite close to 1; nevertheless exceptions
do arise (see e.g., Figure 8 Parameter Sets 1 and 4:
some instances are characterized by larger numbers of
expanded nodes). This fact could appear in contrast with
the trend of the gap, usually equal to 0%. However, it is
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Fig. 7. The solution times on the first set of random instances under parameter sets 1, 2, 3, 4, and 5.

worth noting that the number of branches performed
by the solver does not include only the branches in
the search tree but also the branches performed by the
heuristic strategy to find a primal bound to the instance.
While the former is usually zero (i.e., the instance is
solved at the root node) the latter sometimes may not,
causing therefore some larger numbers of expanded
nodes in some instances.

In Tables 3, 4 and 5 we compare the runtimes in the
Halldórsson et al. under different parameter settings. In
all of the instance in Tables 3, 4 and 5 the optimal solu-
tion was found at the root node without any branching.

In Table 3 we observe that the run time does not
appear to be affected by the choice of the parameters c1
and c2. We observed longer runtimes when considering
the objective function (7). Specifically, in no case was
the model able to tackle Halldórsson et al.’ instances
within 12 hours. We observed that in this case the
longer runtimes were caused by longer solution times
(i.e., longer Simplex iterations and heuristic strategy run-
times) rather than longer model generation times. This
phenomenon is a further confirmation of the hardness of
the PLOHP instances when rates are considered. In order
to provide a better evidence of this phenomenon, we
analyzed the leading principal submatrices 1000x1500
and 2000x2000 of each instance in Halldórsson et al.’
dataset, both in absence and in presence of rates (i.e.,
both when considering the objective functions (1) and

Instance c1 c2 Time (sec.)

gens1 1 2 14741.9
gens2 1 2 17479.6
gens3 1 2 17205.7
gens4 1 2 13914.5
gens5 1 2 8318.1
gens1 2 11 15049.5
gens2 2 11 15975.8
gens3 2 11 15234.1
gens4 2 11 13490.8
gens5 2 11 15337.4

TABLE 3
Performance on Halldórsson et al.’ instances.

(7), respectively; see Tables 4 and 5). The results showed
that, when considering the rates, the solution times
increased from 105% up to 317%, showing a similar trend
in terms of gaps and nodes. It is possible that the use of
column generation techniques and divide and conquer
strategies (e.g., graph decomposition methods) could
improve the solution time of the model and allow for
quicker solution time of these instances. This however,
is outside of the scope of the present article.
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Fig. 8. The number of nodes expanded on the first set of
random instances under parameter sets 1, 2, 3, 4, and 5.

Instance # SNPs # Trios Time (sec.)

gens1 1500 1000 404.76
gens2 1500 1000 401.23
gens3 1500 1000 442.85
gens4 1500 1000 399.51
gens5 1500 1000 444.49
gens1 2000 2000 982.49
gens2 2000 2000 900.74
gens3 2000 2000 886.69
gens4 2000 2000 920.76
gens5 2000 2000 985.95

TABLE 4
Performance on Halldórsson et al.’ instances when

assuming objective function (1) and the constants c1 = 2
and c2 = 11.

6 CONCLUSION

In this article we investigated the Parsimonious Loss of
Heterozygosity Problem (PLOHP), i.e., the problem of par-
titioning suspected polymorphisms of a set of individu-
als into the minimum number of deletion areas. Specifi-

Instance # Trios # SNPs Time (sec.)

gens1 1000 1500 458.36
gens2 1000 1500 457.89
gens3 1000 1500 442.85
gens4 1000 1500 352.61
gens5 1000 1500 999.07
gens1 2000 2000 2823.77
gens2 2000 2000 2883.34
gens3 2000 2000 2852.16
gens4 2000 2000 2926.84
gens5 2000 2000 2878.87

TABLE 5
Performance on subinstances of Halldórsson et al.’

instances when assuming objective function (7).

cally, we showed that the PLOHP can be formulated as
particular instance of the clique partition problem in a
rule-constrained interval graph Gπ , i.e., an interval graph
having an edge between two vertices when a secondary
intersection rule π is satisfied, and we proved the general
NP-hardness of the problem. Moreover, we extended
the results described in Halldórsson et al. [10] by provid-
ing a state-of-the-art integer programming formulation
and a possible strengthening valid inequalities able to
exactly solve real instances of the PLOHP containing
up to 9.000 individuals and 3000 SNPs within 12 hour
computing time. Our results give perspective on the
development of future approaches to solution of the
problem that may turn out to be useful in practical
applications.
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[18] D. Catanzaro and M. Labbé, “The pure parsimony haplotyping
problem: Overview and computational advances,” Intenational
Transactions in Operations Research, vol. 16, no. 5, pp. 561–584, 2009.

[19] D. F. Conrad, D. Pinto, R. Redon, L. Feuk, O. Gokcumen, Y. Zhang,
J. Aerts, T. D. Andrews, C. Barnes, P. Campbell, T. Fitzgerald,
M. Hu, C. H. Ihm, K. Kristiansson, D. G. MacArthur, J. R.
MacDonald, I. Onyiah, A. W. C. Pang, S. Robson, K. Stirrups,
A. Valsesia, K. Walter, J. Wei, T. W. T. C. C. Consortium”, C. Tyler-
Smith, N. P. Carter, C. Lee, S. W. Scherer, and M. E. Hurles,
“Origins and functional impact of copy number variation in the
human genome,” Nature, no. 464, pp. 704–712, 2009.

[20] J. A. Corbel, A. Abyzov, X. Mu, N. Carreiro, P. Cayting, Z. Zhang,
M. Snyder, and M. Gerstein, “PEMer: a computational framework
with simulation-based error models: for inferring genome struc-

taral variants from massive paired-end sequencing data,” Genome
Biology, vol. 38, no. 10, p. R23, 2009.

[21] K. Chen, J. Wallis, M. McLellan, D. Larson, J. Kallick, C. Pohl,
S. McGrath, M. Wendl, Q. Zhang, D. Locke, X. Shi, R. Fulton,
T. Ley, R. Wilson, L. Ding, and E. Mardis, “BreakDancer: an
algorithm for high resolution mapping of genomic structural
variation,” Nature Methods, vol. 6, pp. 677–81, 2009.

[22] D. F. Conrad, T. D. Andrews, N. P. Carter, M. E. Hurles, and J. K.
Pritchard, “A high-resolution survey of deletion polymorphism
in the human genome,” Nature Genetics, vol. 38, pp. 75–81, 2006.

[23] E. Corona, B. Raphael, and E. Eskin, “Identification of deletion
polymorphisms from haplotypes,” in RECOMB 2007 - Proceedings
of the 11th annual international conference on Research in computa-
tional molecular biology, ser. Lecture Note in Computer Science,
S. Istrail, P. Pevzner, and M. Waterman, Eds. Springer, NY, 2007,
pp. 354–365.

[24] S. A. McCarroll, F. G. Kuruvilla, J. M. Korn, S. Cawley, J. Nemesh,
A. Wysoker, M. H. Shapero, P. I. W. de Bakker, J. B. Maller,
A. Kirby, A. L. Elliott, M. Parkin, E. Hubbell, T. Webster, R. Mei,
J. Veitch, P. J. Collins, R. Handsaker, S. Lincoln, M. Nizzari,
J. Blume, K. W. Jones, R. Rava, M. J. Daly, S. B. Gabriel, and
D. Altshuler, “Integrated detection and population-genetic analy-
sis of snps and copy number variation,” Nature Genetics, vol. 40,
pp. 1166–1174, 2008.
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