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Abstract. A phase transition is taking place today. The amount of data
generated by genome resequencing technologies is so large that in some
cases it is now less expensive to repeat the experiment than to store
the information generated by the experiment. In the next few years it
is quite possible that millions of Americans will have been genotyped.
The question then arises of how to make the best use of this information
and jointly estimate the haplotypes of all these individuals. The premise
of the paper is that long shared genomic regions (or tracts) are unlikely
unless the haplotypes are identical by descent (IBD), in contrast to short
shared tracts which may be identical by state (IBS). Here we estimate
for populations, using the US as a model, what sample size of genotyped
individuals would be necessary to have sufficiently long shared haplotype
regions (tracts) that are identical by descent (IBD), at a statistically
significant level. These tracts can then be used as input for a Clark-like
phasing method to obtain a complete phasing solution of the sample.
We estimate in this paper that for a population like the US and about
1% of the people genotyped (approximately 2 million), tracts of about
200 SNPs long are shared between pairs of individuals IBD with high
probability which assures the Clark method phasing success. We show
on simulated data that the algorithm will get an almost perfect solution
if the number of individuals being SNP arrayed is large enough and the
correctness of the algorithm grows with the number of individuals being
genotyped.
We also study a related problem that connects copy number variation
with phasing algorithm success. A loss of heterozygosity (LOH) event
is when, by the laws of Mendelian inheritance, an individual should be
heterozygote but, due to a deletion polymorphism, is not. Such polymor-
phisms are difficult to detect using existing algorithms, but play an im-
portant role in the genetics of disease and will confuse haplotype phasing
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algorithms if not accounted for. We will present an algorithm for detect-
ing LOH regions across the genomes of thousands of individuals. The de-
sign of the long-range phasing algorithm and the Loss of Heterozygosity
inference algorithms was inspired by analyzing of the Multiple Sclerosis
(MS) GWAS dataset of the International Multiple Sclerosis Consortium
and we present in this paper similar results with those obtained from the
MS data.

1 Introduction

Genome-wide association studies (GWAS) proceed by identifying a number of
individuals carrying a disease or trait and comparing these individuals to those
that do not or are not known to carry the disease/trait. Both sets of individu-
als are then genotyped for a large number of Single Nucleotide Polymorphism
(SNP) genetic variants which are then tested for association to the disease/trait.
GWAS have been able to successfully identify a very large number of polymor-
phism associated to disease ([19, 4, 1] etc.) and the amount of SNP data from
these studies is growing rapidly. Studies using tens of thousands of individuals
are becoming commonplace and are increasingly the norm in the association of
genetic variants to disease [5, 19, 13]. These studies generally proceed by pooling
together large amounts of genome-wide data from multiple studies, for a com-
bined total of tens of thousands of individuals in a single meta-analysis study. It
can be expected that if the number of individuals being genotyped continues to
grow, hundreds of thousands, if not millions, of individuals will soon be studied
for association to a single disease or trait.

SNPs are the most abundant form of variation between two individuals. How-
ever, other forms of variation exist such as copy number variation – large scale
chromosomal deletions, insertions, and duplications (CNV). These variations,
which have shown to be increasingly important and an influential factor in many
diseases [17], are not probed using SNP arrays. A further limitation of SNP ar-
rays is that they are designed to probe only previously discovered, common
variants. Rare variants, belonging perhaps only to a small set of carriers of a
particular disease and hence potentially more deleterious, will not be detected
using SNP arrays.

To reach their full potential, the future direction of genetic association studies
are mainly twofold: the testing of more individuals using genome-wide associa-
tion arrays and the resequencing of a small number of individuals with the goal
of detecting more types of genetic variations, both rare SNPs and structural
variation [16]. Testing multiple individuals for the same variants using standard
genome-wide association arrays is becoming increasingly common and can be
done at a cost of approximately $100 per individual. In the next couple of years
it is plausible that several million individuals in the US population will have had
their genome SNP arrayed. In contrast, whole genome resequencing is currently
in its infancy. A few people have had their genome resequenced and the cost of
sequencing a single individual is still estimated in the hundreds of thousands of



dollars. However, whole genome sequencing is preferable for association studies
as it allows for the detection of all genomic variation and not only SNP variation.

Due to the fact whole genome SNP arrays are becoming increasingly abun-
dant and whole genome resequencing is still quite expensive, the question has
been raised whether it would suffice to whole genome sequence a small number
of individuals and then impute [7] other genotypes using SNP arrays and the
shared inheritance of these two sets of individuals. It has been shown – in the
Icelandic population with a rich pedigree structure known – that this could be
done most efficiently using the haplotypes shared by descent between the individ-
uals that are SNP arrayed and those that have been resequenced [10]. Haplotype
sharing by descent occurs most frequently between closely related individuals,
but also occurs with low probability between individuals that are more distantly
related. In small closely related populations, as in the Icelandic population, only
a moderately sized sample size is therefore needed in order for each individual to
have, with high probability, an individual that is closely related to it. In larger
populations, such as the US population, a larger sample size will be needed for
there to be a significant probability of an individual sharing a haplotype by de-
scent within the population. We say that an individual is “Clark phaseable” with
respect to a population sample if the sample contains an individual that shares
a haplotype with this individual by descent. In this paper we explore what the
required sample size is so that most individuals within the sample are Clark
phaseable, when the sample is drawn from a large heterogeneous population,
such as the US population.

Problem 1. Current technologies, suitable for large-scale polymorphism screen-
ing, only yield the genotype information at each SNP site. The actual haplotypes
in the typed region can only be obtained at a considerably high experimental
cost or computationally by haplotype phasing. Due to the importance of hap-
lotype information for inferring population history and for disease association,
the development of algorithms for detecting haplotypes from genotype data has
been an active research area for several years [3, 15, 18, 14, 10, 6]. However,
algorithms for determining haplotype phase are still in their infancy after about
15 years of development (e.g. [3, 18, 9]). Of particular worry is the fact that
the learning rate of the algorithm, i.e. the rate that the algorithms are able to
infer more correct haplotypes, grows quite slowly with the number of individuals
being SNP arrayed.

Solution 1. In this paper we present an algorithm for the phasing of a large
number of individuals. We show that the algorithm will get an almost perfect
solution if the number of individuals being SNP arrayed is large enough and
the correctness of the algorithm grows with the number of individuals being
genotyped. We will consider the problem of haplotype phasing from long shared
genomic regions (that we call tracts). Long shared tracts are unlikely unless the
haplotypes are identical by descent (IBD), in contrast to short shared tracts
which may be identical by state (IBS). We show how we can use these long
shared tracts for haplotype phasing.



Problem 2. We further consider the problem of detecting copy number variations
from whole genome SNP arrays. A loss of heterozygosity (LOH) event is when,
by the laws of Mendelian inheritance, an individual should be heterozygote but
due to a deletion polymorphism, is not. Such polymorphisms are difficult to
detect using existing algorithms, but play an important role in the genetics of
disease [17] and will confuse haplotype phasing algorithms if not accounted for.

Solution 2. We provide an exact exponential algorithm and a greedy heuristic
for detecting LOH regions.

For this paper, we run empirical tests and benchmark the algorithms on
a simulated GWAS datasets [8] resembling the structure of the International
Multiple Sclerosis Genetics Consortium [4] data. To determine LOH events we
assume the data is given in trios, i.e. the genotypes of a child and both its parents
are known.

2 Long Range Phasing and Haplotype Tracts

The haplotype phasing problem asks to computationally determine the set of
haplotypes given a set of individual’s genotypes. We define a haplotype tract (or
tract for short) denoted [i, j] as a sequence of SNPs that is shared between at
least two individuals starting at the same position i in all individuals and ending
at the same position j in all individuals. We show that if we have a long enough
tract then the probability that the sharing is IBD is close to 1. Multiple sharing
of long tracts further increases the probability that the sharing corresponds to
the true phasing.

2.1 Probability of Observing a Long Tract

We show that as the length of the tract increases the probability that the tract
is shared IBD increases. Let t be some shared tract between two individual’s
haplotypes and l be the length of that shared tract. We can then approximate
the probability this shared tract is identical by state (IBS) pIBS(l). Let fM,i

be the major allele frequency of the SNP in position i in the shared tract t.
Assuming the Infinite Sites model and each locus is independent,

pIBS(l) =

l∏
i=1

((fM,i)(fM,i) + (1− fM,i) (1− fM,i))

We can approximate pIBS(l) by noticing fM,i∗fM,i dominates (1−fM,i)(1−fM,i)

as fM,i → 1, pIBS(l) ≈
∏l

i=1(fM,i)
2. Let favg be 1

l fM,i ∀i ∈ t. Then pIBS(l) ≈
(favg)2l. Given fM,i is some high frequency, say 95%, then a sharing of 100
consecutive alleles is very unlikely, pIBS(100) ≈ 0.95200 = 10−5. For very large
datasets we will need to select the length of the tract being considered to be large
enough so that the probability that the sharing is identical by state is small.



The probability two individuals separated by 2(k + 1) meiosis (kth-degree
cousins) share a locus IBD is 2−2k [10]. As k increases, the probability kth-
degree cousins share a particular locus IBD decreases exponentially. However, if
two individuals share a locus IBD then they are expected to share about 200

2k+2
cM [10]. Relating P (IBD) to length of tract l,

P (IBD|sharing of length l) =
2−2n

2−2n +
(

(fM,i)2l + (1− fM,i)
2l
)

which is shown in Fig. 1.
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Fig. 1. Probability of IBD as a function of shared tract length (measured in SNPs) and
plotted for several n and major allele frequencies (MAF). n is the number of meiosis
between the two individuals. The smaller the MAF or n the faster P(IBD) converges
to 1.

2.2 The Clark Phase-able Sample Size Problem

Given the large tract sharing, we can construct the Clark consistency graph hav-
ing individuals as vertices and an edge between two individuals if they share a
tract [15]. Figure 2 shows the Clark consistency graph for different minimum
significant tract lengths (or window sizes) in the MS dataset. At what minimum
significant tract lengths will the graph become dense enough so that phasing can
be done properly? What percentage of the population needs to be genotyped so
that the Clark consistency graph becomes essentially a single connected com-
ponent? We call this “The Clark sample estimate: the size for which the Clark
consistency graph is connected, C.”



We computed the average number of edges in the haplotype consistency
graph as a function of window size to get a sense when the Clark consistency
graph of the MS data becomes connected. Based on Fig. 3 and P (IBD) we can
propose an algorithmic problem formulation from the Clark consistency graph.
Preferably we would like to solve either one of the below problems.

Problem 3. Remove the minimum number of the edges from the Clark consis-
tency graph so that the resulting graph gives a consistent phasing of the haplo-
types.

Problem 4. Maximize the joint probability of all the haplotypes given the ob-
served haplotype sharing.

 

Fig. 2. Left: The Clark consistency graph for region [1400,1600). A large fraction of
individuals share consistent haplotypes of length 200 suggesting many are IBD. Right:
The Clark consistency graph for a smaller window size of 180 base pairs. We observe
a more dense connected component in part due to the smaller windows size but also
because of the specific genomic region.

We believe that both of these problem formulations are NP-hard and in-
stead propose to solve these problems using a heuristic. Our benchmarking on
simulated data shows that this heuristic works quite well.

2.3 Phasing the Individuals That Are Part of the Largest
Component

We now proceed with an iterative algorithm working on the connected compo-
nents in the Clark haplotype consistency graph. First we construct the graph
according to some length of haplotype consistency (Fig. 3 and P (IBD) help
define this length). We iterate through each site of each individual to find the
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Fig. 3. The average number of edges per window size stays relatively constant until
a window size of about 180. The graph becomes more connected at this point likely
because the window size is small enough to not be largely affected by recombination
(but still large enough for the shared tracts to not likely be IBS).

tracts. After we find a site with some long shared region, we look at its neigh-
bors in the connected component and apply a voting scheme to decide what the
value is for each heterozygous allele. After each individual has been processed
we iterate with having resolved sites in the original matrix.

Observation 1. If the Clark consistency graph is fully connected all edges are
due to IBD sharing and all individuals can be perfectly phased up to the point
were all individuals are heterozygote at a particular site.

Therefore, phasing individuals in a connected component of the graph should be
easy, but in practice there will be some inconsistencies for a number of reasons.
If a node in the Clark consistency graph has a high degree then the phasing of
that node will be ambiguous if its neighbors are not consistent. At some times
this may be due to genotyping error and at times this may be due to identical by
state sharing to either one or both of an individuals haplotypes. The identical by
state sharing may because the haplotype has undergone recombination, possibly
a part of the haplotype is shared identical by descent and a part is identical by
state.

Our alphabet for genotype data is Σ = {0, 1, 2, 3}. 0s and 1s represent
the homozygote for the two alleles of a SNP. A 2 represents a heterozygous
site and a 3 represents missing data. Given a set of n-long genotype strings
G = {g1, g2, . . . , g|G|} where gi ∈ Σn, we represent this in a matrix M with
m = 2 |G| rows and n columns:

M =


M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n

...
...

. . .
...

Mm,1 Mm,2 · · · Mm,n





Each genotype gi is represented by the two rows 2i−1 and 2i. Initially, M2i−1,j =
M2i,j = gi[j].

We define allele consistency to be:

c(a, b) =

{
1 if a = b or a ∈ {2, 3} or b ∈ {2, 3}
0 otherwise

Rows r and s of M are consistent along a tract [i, j] (i.e. have a shared tract)
is written

C[i, j](r, s) =
∏

k∈[i, j]

c (Mr,k, Ms,k)

The length of a tract is written |[i, j]| = j − i+ 1.
A shared tract [i, j] between rows r and s is maximal shared tract if it cannot

be extended to the left or right; i.e., i = 1 or c(Mr,i−1, Ms,i−1) = 0 and j =
n or c(Mr,j+1, Ms,j+1) = 0. The maximal shared tract between rows r and s at
position i is written Sr,s

i . It is unique. Note that if Sr,s
i = [j, k] then ∀l∈[j, k]Sr,s

l =
Sr,s
i .

2.4 Tract Finding and Phasing Algorithm

Given that there are some loci for which individuals share IBD and that these
sharings are expected to be large, we developed an algorithm to detect and use
these sharings to resolve the phase at heterozygous sites. Each site is resolved by
determining if there are any other individuals that likely share a haplotype by
descent. SNPs that do not have their phase determined during any given iteration
will be processed in succeeding iterations. If there are enough long IBD loci, this
algorithm should unambiguously determine the phase of each individual.

If we know that the data contains trios, a child and both of its parents, we
start by phasing the trios using Mendelian laws of inheritance. This replaces
many of the heterozygote sites (whenever at least one member of a family is
homozygous) and even a few of the sites having missing data (i.e., when the
parents are both homozygous and the child’s genotype is missing).

To phase using long shared tracts, we start by fixing a minimum significant
tract length L. We run several iterations, each of which generate a modified
matrix M ′ from M , which is then used as the basis for the next iteration.

First, we set M ′ := M .
For each row r we examine position i. If Mr,i ∈ {0, 1} then we move to the

next i. Otherwise Mr,i ∈ {2, 3}, and we count “votes” for whether the actual
allele is a 0 or 1.

V r
0 = |{s | s 6= r and |Sr,s

i | ≥ L and Ms,i = 0}|

V r
1 is defined analogously (the difference being the condition Ms,i = 1). If V r

0 >
V r
1 then we set M ′r,i := 0. Similarly for V r

1 > V r
0 . If V r

0 = V r
1 then we do nothing.

A more complex case is when Mr,i = 2. We make sure the complementary
haplotypes are given different alleles by setting the values of both haplotypes



simultaneously. This does not cause a dependency on which haplotype is visited
first because we have extra information we can take advantage of. We count votes
for the complementary haplotype and treat them oppositely. That is, votes for
the complementary haplotype having a 1 can be treated as votes for the current
haplotype having a 0 (and vice versa). So letting r′ be the row index for the
complementary haplotype, we actually compare V r

0 + V r′

1 and V r
1 + V r′

0 . This is
helpful when SNPs near position i (which therefore will fall within shared tracts
involving i) have already been phased (by trio pre-phasing or previous itera-
tions). It also helps in making the best decision when both haplotypes receive a
majority of votes for the same allele, e.g., both have a majority of votes for 0. In
this case, taking into account votes for the two haplotypes simultaneously will
result in whichever has more votes getting assigned the actual value 0. If they
each receive the exact same number of votes, then no allele will be assigned. This
also avoids the above-mentioned dependency on the order in which the haplo-
types are visited – the outcome is the same since votes for both are taken into
account.

In this manner, M ′ is calculated at each position. If M ′ = M (i.e. no changes
were made) then the algorithm terminates. Otherwise, M := M ′ (M is replaced
by M ′) and another iteration is run.

2.5 Phasing the Individuals That Are Not a Part of the Largest
Component

Individuals that are part of small connected components will have a number of
ambiguous sites once they have been phased using the edges in their connected
component. For these individuals, we compute a minimum number of recombi-
nations and mutations from their haplotypes to others that have better phasing
(belong to larger components). We then assign these haplotypes phase based on
minimizing the number of mutations plus recombinations in a similar manner as
the approach of Minichiello Durbin [12].

Alternatively this could be done in a sampling framework, where we sample
the haplotype with a probability that is a function of the number of mutations
and recombinations.

2.6 Experimental Results on Simulated Data

We compared the correctness and learning rate of our algorithm against BEA-
GLE [2] using a simulated dataset. Using the Hudson Simulator [8], we generated
3000 haplotypes each consisting of 3434 SNPs from chromosomes of length 105.
We estimated a population size of 106 with a neutral mutation rate of 10−9.
To generate genotypes, we randomly sampled from the distribution of simulated
haplotypes with replacement such that each haplotype was sampled on average
2, 3, and 4 times. We applied our algorithm and BEAGLE to the simulated data
after combining haplotypes to create parent-offspring trio data (inspired by our
analysis of the MS dataset). Both algorithms effectively phase the simulated
dataset largely due to the initial trio phasing (Table 1). Our algorithm learns



the true phasing at an increasing rate as the expectation of haplotypes sampled
increases. The most clear example of this trend is in the Brown Long Range
Phasing miscall rate. By weighing edges proportional to probability of sharing
IBD rather than a fixed set of votes per edge, we should achieve more accurate
phasings (subject of future work).

Table 1. We created three populations using a base pool of 3000 simulated haplotypes
using the Hudson simulator. Populations 1, 2, and 3 were created by sampling each
haplotype according to a geometric distribution with expectation 2, 3, and 4 respec-
tively. Haplotypes were then randomly paired to create genotypes. The miscall rate is
the ratio of 2’s miscalled to total 2’s (after trio phasing). Error-free phasings denote
the number of haplotype phasings with zero miscalled 2’s.

Population 1 Population 2 Population 3

BEAGLE miscall rate 0.0685% 0.0160% 0.00951%

Brown Long Range Phasing miscall
rate

0.0501% 0.0148% 0.00503%

BEAGLE Error-free phasings 4467 6819 8898

Brown Long Range Phasing Error-
free phasings

4459 6840 8923

Total haplotypes 4524 6870 8940

3 Loss of Heterozygosity Regions

We call the loss of the normal allele a Loss of Heterozygosity (LOH) which
may be a genetic determinant in the development of disease [11, 17]. In some
situations, individuals that are heterozygous at a particular locus can possess
one normal allele and one deleterious allele. The detection of CNVs, such as
deletions, is an important aspect of GWAS to find LOH events, and yet, it is
commonly overlooked due to technological and computational limitations.

LOH can be inferred using data from SNP arrays. The SNP calling algorithm
for SNP arrays cannot distinguish between an individual who is homozygous for
some allele a and an individual who has a deletion haplotype and the allele a
(Fig. 4, Left). LOH events can then be inferred by finding such genotypic events
throughout the dataset. We will present two algorithms for computing putative
LOH regions across GWAS datasets.

3.1 Definitions

A trio consists of three individual’s genotypes and is defined by the inheritance
pattern of parents to child. As before, let M denote the matrix of genotypes but
we now assume M consists of trios. Let Mi denote the ith trio of M (individuals
i, i + 1, and i + 2). At any site j the trio Mi may have 43 possible genotype



Called Haplotypes Actual Haplotypes

Evidence

of LOH

Consistent

with LOH

Not consistent

with LOH

AA CC

CC

AA CA

AA

AA CA

AC

AA CA

AC

A- CA

-A

A- CC

-C

0 1 2 3

0

CP EF CM CP 0

N EM EM EM 1

N N N N 2

CP CP CM CP 3

1

EM N EM EM 0

EF CP CM CP 1

N N N N 2

CP CP CM CP 3

2

CF EF N CF 0

EF CF N CF 1

N N N N 2

CF CF N CF 3

3

CP EF CM CP 0

EF CP CM CP 1

N N N N 2

CP CP CM CP 3

Father Genotype

M
o

th
e

r 
G

e
n

o
ty

p
e C

h
ild

 G
e

n
o

ty
p

e

Fig. 4. Left: Three examples of inheritance patterns in GWAS data in the context of
LOH. The Evidence of LOH (ELOH) pattern shows strong correlation between LOH
and a SNP site because the only possible explanation involves introducing a deletion
haplotype. An inheritance pattern is called consistent with LOH (CLOH) if it does
not contradict the presence of a deletion haplotype and can be explained with normal
inheritance patterns. An inheritance pattern not consistent with LOH (NCLOH) occurs
when a deletion haplotype cannot be introduced to explain the trio inheritance pattern.
Right: The correlation between inheritance pattern and ELOH, CLOH, and NCLOH.
We define E to be ELOH, C to be CLOH, and N to be NCLOH. The superscript
defines for which parent the putative deletion haplotype is associated. We define the
superscript F to be consistent with a deletion haplotype inherited from the father, M
for mother, and P for both parents.

combinations for which the trio can either be consistent with LOH (CLOH),
not consistent with LOH (NCLOH), or show evidence of LOH (ELOH) (Fig.
4, Left). A trio at site i shows ELOH if the inheritance pattern can only be
explained with the use of a deletion haplotype (or a genotyping error). A trio at
site i is NCLOH if the inheritance pattern cannot be explained with the use of a
deletion haplotype, and CLOH if it may be explained with the use of a deletion
haplotype.

3.2 The LOH Inference Problem

We are given a set of n SNPs and a set of m trios genotyped at those SNPs. For
each SNP/trio pair the SNP can have one of three labels:



– X – The marker is inconsistent with having a loss of heterozygosity (Fig. 4,
Left: Not Consistent with LOH).

– 0 – The marker is consistent with having a loss of heterozygosity (Fig. 4,
Left: Consistent with LOH).

– 1 – The SNP shows evidence of loss of heterozygosity, (Fig. 4, Left: Evidence
of LOH).

For any trio Mi, a contiguous sequence of at least one 1 and an unbounded
number of 0 sites is called an putative deletion. We call two putative deletions, pi
and pj , overlapping if they share at least 1 common index. Let hi and hj be two
ELOH and let pi and pj contain hi and hj respectively. Each putative deletion
is associated with an interval which is defined by their start and end indices:
[si, ei] and [sj , ej ] respectively. hi and hj are called compatible (or overlapping)
if hi and hj are members of the same putative deletion (i.e. hi ∈ [si, ei] and
hj ∈ [si, ei]) or hi is contained in the interval defining pj and hj is contained in
the interval defining pi. All CLOH and ELOH sites within a putative deletion
must share the same parent (Fig. 4, Right). The task is to call all 1’s ∈M either
a deletion or a genotyping error according to some objective function which
weighs the relative costs of calling genotyping errors or deletions.

3.3 LOH Inference Algorithms

We present an exponential algorithm and a greedy heuristic for computing pu-
tative deletions. Both algorithms begin by parsing M and removing SNPs in
which the Mendelian error rate is above 5% to remove artifacts from genotyp-
ing. We then calculate the LOH site vector for each trio in the dataset which
corresponds to using the table defined in Fig. 4 (Right) to translate each SNP

site. This new matrix is denoted N( |M|
3 ×l). To identify the genotyping errors

and putative deletions, we define two operations on N : error correction call and
deletion haplotype call. An error correction call will categorize an ELOH site
as a genotyping error effectively removing it from any particular deletion haplo-
type. An deletion haplotype call will identify a putative deletion as an inherited
deletion haplotype. We infer inherited deletion haplotypes using the objective
function

minN (k1 ∗ (genotype error corrections calls) + k2 ∗ (deletion haplotypes calls))

where k1 and k2 are weighing factors. k1 and k2 can be simple constant factors
or a more complex distribution. For example, setting k1 to 2 and k2 to 7, we will
prefer calling a putative deletion with at least 4 pairwise compatible ELOH sites
an inherited deletion. For a more complex objective function, we could define k2
to be k3(number of conserved individuals) + k4(length of overlapping region) +
k5((number of ELOH)/(number of CLOH)). The parameters must be tuned to
the input data. For example, association tests will tune the parameter to favor
putative deletions with many conserved individuals. We suspect that this prob-
lem is NP-complete for general N . In the case of the Multiple Sclerosis dataset,



the matrix N contains small overlapping putative deletions and over 95% of N
is non-putative deletions, that is, N is very sparse.

Algorithm 1. We start by giving an exact exponential algorithm which min-
imizes the objective function. Let xi denote a set of overlapping putative dele-
tions. For sparse N we can reduce the minimization function from minN to
minx1..xs

where x1..xs ∈ N and {x1..xs} ⊆ N . Since any particular putative
deletion is defined by the ELOH sites, we can enumerate all feasible non-empty
sets of ELOH sites for all xi. Computing this for all putative deletions demands
work proportional to

∑s
i=1B(ei) where ei is the number of ELOH sites in xi

and B is the Bell number. In practice, we found that ei is bounded by a small
constant but this complexity is still unreasonable for most ei.

Algorithm 2. For practical purposes, we’ve developed a greedy algorithm for
cases where the exact exponential algorithm in unreasonable (Fig. 5). For each
xi ∈ N , the algorithm selects the component with the maximum trio sharing,
that is, the possibly overlapping putative deletions that include the most ELOH
sites. Because every two ELOH sites in an inherited deletion must be pairwise
compatible, this component is a clique. To find the maximum clique, we con-
struct an overlap graph G(V,E) where hi ∈ V if hi is an ELOH in a putative
deletion in this interval and (hi, hj) ∈ E if hi and hj are compatible. Iden-
tifying the maximum clique in this graph is NP complete. We therefore find
maximum cliques using a greedy approach that iterates over a queue containing
the compatible vertices, selecting the highest degree node vm and adding it to
the potential clique set if and only there is an edge between vm and each vertex
in the clique. At the end of this process, the algorithm calls the site(s) a deletion
haplotype or genotyping error according to the objective function, clears the set,
and continues until all vertices in the queue are processed.

3.4 Experimental Results on Simulated Data

We tested the algorithm using the same simulated phasing dataset. To simulate
and score an error-prone GWAS dataset containing an LOH, we define six pa-
rameters, two metrics, and generate only one deletion in the genotype matrix
(Table 2). We randomly select a set of trios and an interval in the simulated
haplotype matrix to contain the generated deletion. After the site is selected,
we place ELOH sites on the SNPs according to some probability (assumed in-
dependent for each SNP in the interval).

Although our LOH model is quite simplistic, we do observe promising results.
Our algorithm is sensitive to inherited deletions that are very short but shared
among many people and also sensitive to inherited deletions that are longer and
shared by few people.

In general, the algorithm is accurate when the coefficient of deletion call and
genotype error call are tuned well (Table 3 – parameter sets 1-4). For a dataset
with low genotyping error rate (∼0.0001 site error probability), the coefficient
of deletion call can be set low; if it is set too high, a true inherited deletion



Trio 1 1 0 0 1 1 0 0 X 0 0 X X

T i 2 0 X 1 0 1 1 X 0 0 X 1 X

SNP Sites

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Trio 1 1 0 0 1 1 0 0 X 0 0 X XTrio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Trio 1 1 0 0 1 1 0 0 X 0 0 X X

Trio 2 0 X 1 0 1 1 X 0 0 X 1 X

Trio 3 X X 1 0 1 0 0 0 0 0 0 X

Fig. 5. A visual depiction of the greedy algorithm for finding putative deletions (con-
sistencies with particular parents are omitted for simplicity). The red rectangles denote
trio SNP sites which have not been called yet. The blue rectangle denotes a called in-
herited deletion haplotype. A green rectangle denotes a genotype error call. First, the
algorithm finds the component (a clique in G(V,E)) with the maximum trio sharing:
SNP sites 3-6. It checks if the score of this component and either calls it an inher-
ited deletion or a set of genotyping errors (in this case the former). The intervals are
updated by remove vertices and edges from the overlap graph and the algorithm con-
tinues. Both remaining components consisting of SNP sites 1 and 11 are both of size
1. These will most likely be called genotyping errors.

may be incorrectly called a genotyping error, possibly missing an associative
LOH (Table 3 – parameter set 5). A similar caveat pertains to datasets with
significant genotyping error rates (for instance, the MS dataset). A coefficient
of deletion call that is too low can yield false positives (Table 3 – parameter set
6). Finding appropriate tuning mechanisms for the two coefficients to maximize
algorithm specificity and sensitivity will be the subject of future work.

4 Conclusion and Future Work

We have shown that long range phasing using Clark consistency graphs is prac-
tical for very large datasets and the accuracy of the algorithm improves rapidly
with the size of the dataset. We have also given an algorithm that removes most
Mendelian inconsistencies and distinguishes between genotyping errors and dele-
tion events which can be factored into the phasing algorithm when applied to
GWAS data. Future work includes applying probabilistic models to both algo-
rithms to score tract sharings and putative deletions more appropriately.

All algorithms are available via sending a request to the corresponding au-
thors.



Table 2. Six tunable parameters and two scoring metrics for testing of the LOH
algorithm.

Probability of Error per Site For all SNP-trio pairs, we add a Mendelian
error according to this probability (assumed
independent for each site).

Interval Length The exact length of the generated deletion.

Trios in Deletion The exact number of trios sharing the gener-
ated deletion.

Probability of ELOH in Interval The probability a SNP is an ELOH site within
the generated deletion interval.

Coefficient of Genotype Error Call The objective function cost for calling an
ELOH site a genotyping error (parameter k1
in our objective function)

Coefficient of Inherited Deletion Call The objective function cost for calling a set of
ELOH sites an inherited deletion (parameter
k2 in our objective function)

True Positive There is one interval that contains the inher-
ited deletion, thus a true positive corresponds
to correctly identifying an inherited deletion
in this region.

False Positive We have a false positive if we identify an in-
herited deletion in a region disjoint from the
generated deletion’s region.

Table 3. We tested out algorithm using the six tunable parameters as defined in Table
2. Each configuration was run with a coefficient of genotyping error of 2.

Param
Set

Site Error
Prob.

Interval
Length

Trios in
Deletion

Prob. of
ELOH

Coeff. of
Deletion

True
Positive

False
Positive

Runs

1 0.0001 5 5 0.75 11 1000 0 1000

2 0.0001 2 5 1 11 1000 0 1000

3 0.0001 2 5 1 11 1000 0 1000

4 0.0001 9 3 0.75 11 1000 0 1000

5 0.0001 7 3 0.50 15 58 0 100

6 0.00333 9 3 0.75 15 100 38888 100
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