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3

Communicated by F. A. Potra

Abstract. We present a polynomial-time interior-point algorithm for a
class of nonlinear saddle-point problems that involve semidefiniteness
constraints on matrix variables. These problems originate from robust
optimization formulations of convex quadratic programming problems
with uncertain input parameters. As an application of our approach,
we discuss a robust formulation of the Markowitz portfolio selection
model.
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1. Introduction

We study the solution of nonlinear saddle-point problems that arise
from a robust optimization formulation of convex quadratic programming
problems whose input parameters are uncertain. We develop interior-point
methods to solve these problems in polynomial time.

Consider a convex quadratic programming (QP) problem given in the
following form:

min
x

cTxC(1�2)xTQx, (1a)

s.t. Ax¤b, (1b)
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where

A∈�mBn, b∈�m, c∈�n, Q∈S
n
C

are the input data and x∈�n are the decision variables. S
n denotes the

space of nBn symmetric matrices and S
n
C denotes the space of symmetric

positive-semidefinite n-dimensional matrices. We will denote the feasible set
by χ , i.e.,

χG{x: Ax¤b},

and assume that it is nonempty to avoid trivial cases.
In many practical instances of the QP problem (1), some or all compo-

nents of the data are uncertain. They are either unknown at the time of the
problem formulation�solution and will be realized only in the future, or
there are some intrinsic restrictions that makes it impossible to compute or
measure these quantities exactly. Arguably, the most common approach
toward handling such uncertainties is to just ignore them, substitute some
highly likely representative quantities for the uncertain components of the
data, and then treat the problem as a deterministic problem with no uncer-
tainty. Once a solution is obtained for this representative problem, one may
study the stability properties of this solution using the techniques of sensi-
tivity analysis.

Stochastic programming offers a more sophisticated approach. This
approach requires a probability distribution on the uncertain parameters
and replaces the uncertain quantities with their expected values in the optim-
ization model. As such, stochastic programming lays a great responsibility
on the modeler who has to determine a probability distribution for the
model and may generate misleading results when the distribution is an inac-
curate representation of the true nature of the model.

Here, we will focus on the robust optimization approach, which was
studied recently by Ben-Tal and Nemirovski in Refs. 1 and 2 among others.
This approach is more conservative and is applicable particularly in cases
where the modeler cannot determine accurately or predict the input data
but seeks a solution that will be desirable in all possible realizations of this
data, i.e., when a best worst-case performance is sought.

We study the case where the uncertainty is in the objective function of
the QP and assume that the constraints are known and certain. In Section
4, we describe an application problem that motivates these assumptions.
We describe the uncertainty set for the Q matrix as the intersection of a
hyperrectangle of the form {Q: L⁄Q⁄U}, where the inequalities are com-
ponentwise and the cone of positive-semidefinite matrices. This particular
choice of the uncertainty set is motivated by the problems where the Q
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matrix is known to be positive semidefinite, e.g., when Q is a covariance
matrix, but its components have to be estimated.

The use of intervals appears very natural in modeling uncertainty. The
modeler may choose to look at several different scenarios, corresponding to
the best and worst cases. Different methods may be used to estimate the
parameters, possibly by different modelers. Different data sets can be used,
and the L and U matrices correspond to the maximum and minimum of
those estimations. Alternatively, the estimation can be done only using con-
fidence intervals. Furthermore, our approach can be applied to cases where
the uncertainty set is not given by intervals. Indeed, our techniques and
results generalize readily to other types of uncertainty sets, as long as these
sets admit a self-concordant barrier function; see Ref. 3 for a definition.

In a related work, Ben-Tal and Nemirovski apply the robust optimiz-
ation approach to quadratically constrained convex quadratic programming
problems; see Ref. 2. They focus on uncertainty in the constraints which
can handle the objective function uncertainty after a straightforward trans-
formation. However, they model the Q matrix as given by the equation
QGAAT, and then place the uncertainty description on the A matrix. When
one has an uncertainty description for only the Q matrix, transforming this
set into an uncertainty description on the Cholesky-like factors of the Q
matrix can be a very difficult task, if not impossible. Also, after we finished
an earlier draft of the current manuscript, we became aware of ongoing
work by Lobo and Boyd; see Ref. 4. This paper studies a problem similar
to ours, but is focused more on the modeling issues and does not contain a
complexity estimate of the corresponding algorithm or a proof of
polynomiality.

Our work is also related to Nemirovski’s work in Ref. 5 on self-con-
cordant convex-concave functions. In fact, our algorithm and analysis can
be regarded as a simplification of the Nemirovski algorithm and analysis
for a less general class of saddle-point problems. While the barrier method
in Ref. 5 requires an inner algorithm between the updates of the barrier
parameter, we just take a single step of the Newton method. Like Nemirov-
ski, we achieve a polynomial bound on the number of iterations of our
short-step path-following algorithm.

The remainder of this paper is organized as follows. In Section 2, we
present a robust optimization problem and discuss different formulations
of it, including a formulation in the form of a saddle-point problem. We
introduce also measures of proximity of the variables to the set of saddle
points and the so-called central path. In Section 3, we describe a short-step
interior-point algorithm and prove a polynomial complexity result for the
algorithm. In Section 4, we provide an application stemming from a robust
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formulation of the well-known Markowitz model for portfolio optimization.
Finally, we conclude in Section 5.

2. Problem Formulation

In the robust optimization approach to the solution of uncertain optim-
ization problems, one takes the conservative viewpoint that the realization
of the data will be determined by an adversary who will choose the worst-
data instance for a given set of decision variables. In this setting, the task
of the modeler is to choose the values for the decision variables that have
the best worst-case performance.

Recall the quadratic programming problem given in (1). We will con-
sider an environment where the objective function is uncertain but is known
to be a convex function of the variables. For example, if the matrix Q in (1)
represents a covariance matrix, we would know that it is positive semi-
definite, and therefore that the objective function is convex, even if its entries
are not known. We will describe an important example of this scenario in
Section 4. We model the uncertainty in the objective function using the
following uncertainty set:

Y _Y (cL, cU, QL, QU)

_{(c, Q)∈�nBS
n: cL⁄c⁄cU, QL⁄Q⁄QU, Q � 0}, (2)

where cL, cU are given n-dimensional real vectors satisfying cLFcU, and
where QL, QU are in S

n and satisfy QLFQU. As mentioned above, Q � 0
means Q∈S

n
C . We will assume that Y has a nonempty interior. When the

objective function of a quadratic program is unknown or uncertain, the
input parameters need to be estimated. Our particular choice for the uncer-
tainty set with lower and upper bounds on the input parameters provides
the modeler with a simple and natural model of uncertainty.

Note that, since QL and QU are symmetric and since Q is restricted to
be symmetric, the matrix inequalities

QL⁄Q⁄QU

can be represented with n(nC1) componentwise scalar inequalities say, for
the upper triangular portions of these symmetric matrices. In other words,
QL⁄Q is a short-hand notation for

QL
ij⁄Qij , 1⁄ i⁄ j⁄n,
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and similarly for Q⁄QU. We will refer occasionally to the following projec-

tions of the set Y :

Y
c_{c∈�n: cL⁄c⁄cU},

Y
Q_{Q∈S

n: QL⁄Q⁄QU, Q � 0}.

In what follows, we will denote the pair (c, Q) with y. Given x∈X and

yG(c, Q)∈Y , let

φ (x, y)Gφ (x, c, Q)

_cTxC(1�2) xTQx

GcTxC(1�2) xxT · Q (3)

denote the value of the objective function. For symmetric matrices A and
B, A · B denotes the standard inner product, i.e.,

A · BGtrace (AB )G∑
i, j

AijBij .

Note that the φ is a quadratic function of x and is a linear function of c

and Q. For fixed x̂∈X and fixed ŷG(ĉ, Q̂)∈Y , we will use the following
notation:

φ x̂ (y)_φ (x̂, y), φ ŷ (x)_φ (x, ŷ).

For a given vector of decision variables x, we will denote the worst-
case realization of the objective function by

f (x)_ max
(c, Q)∈Y

φ (x, c, Q) (4)

Gmax
c∈Y

c
cTxCmax

Q∈Y
Q
(1�2) xxT · Q (5)

G: f c(x)Cf Q(x). (6)

Note that both Y
c and Y

Q are compact sets and that the objective function
for each term in (5) is linear. Therefore, the optimal values are achieved and
the use of max rather than sup is justified. The first term in (5) is a linear
programming problem. It is easy to see that

f c(x)G∑
i

x+i cU
i A∑

i

x−i cL
i .

Here,

x+Gmax{0, x} and x−Gmax{0, −x}.
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The second term in (5) is a semidefinite programming problem, which has
been extensively studied in recent years; see e.g. Refs. 6–8.

For future reference, we construct now the duals of the two optimiz-
ation problems in (5). For a fixed x, let δL∈�n and δU∈�n be the dual
variables corresponding to the constraints c¤cL and c⁄cU. Then, the dual
of the linear program in (5) is the following:

min
δL, δU

−(cL)TδLC(cU)TδU,

s.t. −δLCδUGx,

(δL, δU)¤0.

(7a)

(7b)

(7c)

Similarly, letting VL and VU be the dual variables corresponding to the
constraints Q¤QL and Q⁄QU in the semidefinite program in (5), and using
the explicit dual slack variable Z, we can represent the dual of the semi-
definite program that defines f Q(x) as follows:

min
VL, VU, Z∈S

n
−QL · VLCQU · VU,

s.t. −VLCVUAZG(1�2) xxT,

(VL, VU)¤0, Z� 0.

(8a)

(8b)

(8c)

We would like to find a robust solution to (1), i.e., a solution that minimizes
f(x),

min
x∈X

f (x)Gmin
x∈X

� max
(c, Q)∈Y

φ (x, c, Q)� . (9)

We denote the best allocation of decision variables for a given realiz-
ation of the objective function by

g(c, Q)_min
x∈X

φ (x, c, Q). (10)

For fixed c and Q, the minimization problem on the right-hand-side of (10)
is a convex quadratic programming (QP) problem, provided that Q is a

positive semidefinite matrix. For simplicity, we will assume that X is
bounded. This assumption is justified in most real life applications including
the example that we consider in Section 4. It can be enforced by adding box
constraints of the form AM⁄xi⁄M with a large positive M, if necessary.
With the boundedness assumption, the minimum is attained in the definition
(10). Using the dual variables λ corresponding to the constraints Ax¤b, we
can construct the following dual of this QP:

max
x,λ

bTλA(1�2) xTQx,

s.t. ATλAQxGc,

λ¤0.

(11a)

(11b)

(11c)
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Then, the adversary that tries to choose the worst possible realization of the
objective function would need to solve the following problem:

max
(c, Q)∈Y

g(c, Q)G max
(c, Q)∈Y

�min
x∈X

φ (x, c, Q)� . (12)

Problems (9) and (12) are duals of each other; we will refer to (9) as the
primal and to (12) as the dual. The proof of the following weak duality
result is straightforward.

Lemma 2.1. For any x∈X and (c, Q)∈Y , the following inequality
holds:

g(c, Q)⁄ f (x). (13)

Consider the epigraphs of the functions f and −g. Using the standard
argument that a function is convex if and only if its epigraph is a convex
set, the following observation is easily proved.

Lemma 2.2. f(x) defined in (4) is a convex function of x; g(c, Q)
defined in (10) is a concave function of (c, Q).

Using Lemma 2.2, we can characterize the primal-dual pair of problems
(9) and (12) as convex optimization problems. However, the objective func-
tions f and g need not be smooth functions of their arguments. One possibil-
ity to approach these problems is to use the techniques of nonsmooth
optimization such as the gradient bundle algorithms in Ref. 9 or the analytic
center methods in Ref. 10. Alternatively, using the duals (7) and (8) to
replace f c(x) and f Q(x) in (6), we can also represent (9) as a nonlinear
semidefinite programming problem. However, we prefer a saddle-point
approach as outlined below.

The function φ (x, y) is convex–concave; i.e., for any fixed ŷ∈Y , the
restricted function φ ŷ (x) is convex in x and, for any fixed x̂∈X , the restric-
ted function φ x̂ (y) is concave (in fact, linear) in y. Since X and Y are
assumed to be nonempty and bounded, the following lemma follows
immediately from Theorem 37.3 on pp. 392–393 of Ref. 11.

Lemma 2.3. The optimal values of (9) and (12) are equal.

Theorem 37.3 of Ref. 11 actually tells us more; it says that the function
φ has a saddle point. This observation allows us to formulate each of prob-
lems (9) and (12) as a saddle-point problem. In this representation, the func-
tion φ (x, y)Gφ (x, c, Q) acts as the saddle function and we look for x̄∈X

and (c̄, Q̄)∈Y such that

(SPP) φ (x̄, c, Q)⁄φ (x̄, c̄, Q̄),⁄φ (x, c̄, Q̄), ∀x∈X , (c, Q)∈Y . (14)



JOTA: VOL. 116, NO. 3, MARCH 2003566

This representation is important in two respects. First, it shows that we
can approach the robust optimization problem using the rich literature on
saddle-point problems. For example, Sun, Zhu, and Zhao studied moder-
ately nonlinear saddle-point problems and developed polynomial time algo-
rithms in Ref. 12, while Nemirovski developed a self-concordance theory
for saddle-point problems in Ref. 5. Second, the saddle-point formulation
gives rise to a measure which controls the progress of an algorithm that we
will introduce later in the paper.

2.1. Optimality Conditions. In this section, we discuss the optimality
conditions that characterize the saddle points of the function φ . Let
(x̄, c̄, Q̄) be a saddle-point of the function φ with x̄∈X and ȳG(c̄, Q̄)∈Y .
As mentioned above, with our assumptions that X and Y are nonempty
and bounded, such a point is guaranteed to exist. From the definition of a
saddle point, we have that (i) x̄ minimizes φ ȳ(x) over X and that (ii) ȳ
maximizes φ x̄( y) over Y . The Karush–Kuhn–Tucker conditions for these
two problems, which are both necessary and sufficient because of the con-
vexity properties of respective functions, lead to a set of conditions that
characterize saddle points of φ .

From (i), we have that there exist Lagrange multipliers λ∈�m such that

Q̄x̄AATλCc̄G0, (15a)

Ax̄Ab¤0, λ¤0, (15b)

(Ax̄Ab) ° λG0. (15c)

Above, A °B denotes the Hadamard product; i.e., for matrices AG[aij ] and
BG[bij ] of the same dimensions,

A °BGCG[cij ], where cijGaijbij .

From (ii), we conclude that there exist Lagrange multipliers δL∈�n

and δU∈�n such that

−δLCδUAx̄G0, (16a)

c̄AcL¤0, cUAc̄¤0, (16b)

(δL, δU)¤0, (16c)

(c̄AcL) ° δLG0, (16d)

(cUAc̄) ° δUG0, (16e)

and there exist multipliers VL, VU, Z∈Sn such that

−VLCVUAZA(1�2) x̄ x̄TG0, (17a)

Q̄AQL¤0, QUAQ̄¤0, (17b)
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(VL, VU)¤0, Q̄ � 0, Z � 0, (17c)

(Q̄AQL) °VLG0, (QUAQ̄) °VUG0, (17d)

Q̄ZG0. (17e)

A remark about our notation is in order. As we mentioned above,
because of symmetry considerations, each of the systems Q¤QL and
Q⁄QU can be represented using n(nC1)�2 componentwise constraints.
Therefore, the corresponding Lagrange multiplier vectors should both lie
in �n(nC1)�2. However, for ease of notation, we will represent them as n-
dimensional symmetric matrices and let VL

ijGVL
ji , etc. Note that the space

S
n has the same dimension as �n(nC1)�2. As a result, instead of writing the

nonnegativity and complementarity constraints in componentwise form as

VL
ij¤0, 1⁄ i⁄ j⁄n,

VU
ij ¤0, 1⁄ i⁄ j⁄n,

(Q̄ijAQL
ij) °VL

ijG0, 1⁄ i⁄ j⁄n,

(QU
ijAQ̄ij) °VU

ij G0, 1⁄ i⁄ j⁄n,

we can use the short-hand matrix form as in (17). We recall that, for sym-
metric matrices A and B, A¤0 represents membership in �n(nC1)�2

C , the cone
of n-dimensional symmetric matrices with nonnegative entries, unlike the
inequality B � 0 which denotes membership in S

n
C , the cone of n-dimen-

sional positive-semidefinite symmetric matrices; also, A °BG0 represents
n(nC1)�2 equations, not n2 equations.

The optimality conditions (15)–(17) are similar to the optimality con-
ditions that one encounters in standard linear and semidefinite program-
ming problems; see e.g. Ref. 6. However, standard methods for such
problems cannot be applied here without modification because of the non-
linearity in the x variables in (17a) and the cross-product term Qx in (15a).
Fortunately, this is a mild form of nonlinearity, and we will discuss later
how self-concordant barrier functions regularize the effects of this non-
linearity on the variables.

2.2. Central Path. To find a saddle point of the function φ , we will
follow a barrier approach. That is, we will consider a barrier function that
combines the self-concordant barriers on the convex sets X and Y with
the saddle function φ ; we will determine near saddle points for the combined
barrier function; then, by gradually increasing the weight of the function φ ,
we will approach a saddle point for this function.
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Let X
0 and Y

0 denote the interiors of the sets X and Y , which we
assume to be nonempty. Consider the following barrier functions for the
sets X and Y :

F (x)G− ∑
iG1

m

log[AxAb]i , ∀x∈X
0, (18)

G(y)G− ∑
jG1

n

log(cU
j Acj)A ∑

jG1

n

log(cjAcL
j )A ∑

1⁄ i⁄ j⁄n

log(QU
ijAQij)

− ∑
1⁄ i⁄ j⁄n

log(QijAQL
ij)Alog det(Q), ∀yG(c, Q)∈Y

0. (19)

The notion of self concordance was introduced by Nesterov and Nemirov-
ski, and their book (Ref. 3) is the definitive reference on the subject. It is
verified easily that F (x) is a self-concordant barrier for X with parameter
m and that G( y) is a self-concordant barrier for Y with parameter n2C4n.
In fact, one can show that G( y) is an a-self-concordant barrier for Y for
all a¤n(nC5)�2, but we will use the more obvious parameter n2C4n in our
discussion.

For t¤0, consider the following saddle-barrier function:

φ t (x, y)Gφ t (x, c, Q)_ tφ (x, y)CF (x)AG (y). (20)

We look for saddle points of the function φ t , i.e., for xt∈X
0 and

ytG(ct , Qt)∈Y
0 such that

(SPPt) φ t (xt , y)⁄φ t (xt , yt)⁄φ t (x, yt), ∀x∈X
0, y∈Y

0.

(21)

Note that F (x) and G( y) are convex functions of their arguments. There-
fore, φ t (x, y) is a convex–concave function. Using an argument identical to
the one that precedes the statement of Lemma 2.3 and using Theorem 37.3
in Ref. 11, we conclude that there exists a saddle point for the function
φ t (x, y) for all nonnegative values of the parameter t. In fact, this saddle
point is unique.

Lemma 2.4. For each t¤0, there exists a unique saddle point (xt , yt)
of the function φ t (x, y) in X

0BY
0.

Proof. We discussed already the existence. For all t¤0, φ t (x, y) is a
strictly convex function of x and a strictly concave function of y. Further,
X

0 and Y
0 are nonempty, bounded sets by our assumptions. Therefore,

for each ŷ∈Y
0, there is a unique minimizer of φ t (x, ŷ) in X

0, and for each
x̂∈X

0 there is a unique maximizer of φ t (x̂, y) in Y
0. Consequently, if
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(x1, y1) and (x2, y2) are two different saddle points of φ t (x, y), we must have
that x1 ≠ x2 and y1 ≠ y2. But now the strict convexity�concavity properties
of φ t (x, y) and the saddle-point properties of (x1, y1) and (x2, y2) lead to the
following contradiction:

φ t (x
2, y1)Fφ t (x

2, y2)Fφ t (x
1, y2)Fφ t (x

1, y1)Fφ t (x
2, y1). (22)

Hence, there cannot be multiple saddle points of φ t. �

As in the previous subsection, we have a set of optimality conditions
that characterize the saddle points of the functions φ t for t¤0. The pair
(xt , yt) is a saddle point of the function φ t (x, y) if and only if there exist
Lagrange multipliers λ t∈�m, δL

t ,δU
t ∈�n and VL

t , VU
t , Zt∈S

n that satisfy
conditions identical to (15)–(17), except that loose inequalities are replaced
by strict inequalities and that the complementarity equations appearing at
the bottom of (15)–(17) are replaced with the following relations:

(AxtAb) ° λ tGµt e, (23)

(ctAcL) ° dL
t Gµt e, (24a)

(cUAct) ° dU
t Gµt e, (24b)

(QtAQL) °VL
t GµtE, (25a)

(QUAQt) °VU
t GµtE, (25b)

QtZtGµt I. (25c)

Above, µtG1�t, e denotes a vector of ones of appropriate dimension, and
E denotes an nBn matrix with 1 on the diagonal entries and 1�2 on the
offdiagonal entries. E is the symmetrization of a lower or upper triangular
matrix of ones.

Equations (23)–(25) can be viewed as a perturbation of the com-
plementarity equations in the original system (15)–(17). Instead of insisting
that the complementary quantities have a zero product, we now insist that
these products are equal for all complementary pairs.

As Lemma 2.4 indicates, there exists a unique solution to the system
(23)–(25) coupled with the feasibility equations for each nonnegative t. The
set of solutions to this system for different values of t defines the central
path for our saddle-point problem,

C _{(xt , ct , Qt) ∃t¤0, s.t. (xt , ct , Qt) a saddle point of φ t (x, c, Q)}. (26)

The central path is the main theoretical tool of path-following algorithms,
i.e., algorithms that try to reach a solution by generating iterates around
the central path for progressively larger values of t. In the next section, we
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will discuss measures of proximity to the central path and to the saddle
points. This discussion will motivate the algorithm that we develop to solve
the problem (SPP).

2.3. Proximity Measures and Results on Central Path. In this section,
we discuss a global measure of proximity to a saddle point, the duality gap
of the function φ (x, y). We will show that this measure is nicely bounded
on the central path C . Then, we introduce measures of proximity to the
central path that allow us to show that the duality gap is also bounded at
points close to the central path.

Let us start with the following question: Given points x∈X and
y∈Y , how does one determine whether this pair is or is not close to a saddle
point? Recall the functions f and g defined in (4) and (10). From Lemma
2.1, we have that

f (x)¤g(y), for all x∈X and y∈Y .

Furthermore, (x, y) is a saddle point for φ (x, y) if and only if f (x)Gg(y).
Therefore, the difference between these two functions serves as a global
measure of proximity to a saddle point,

ν (x, y)_ f (x)Ag (y)

G max
(c′, Q′ )∈Y

φ (x, c′, Q′ )Amin
x′∈X

φ (x′, c, Q). (27)

In Ref. 5, Nemirovski calls ν (x, y) the weak proximity of φ . It can be con-
sidered also as the duality gap between trial solutions of the primal problem
(9) and the dual problem (12). Since g is extended real-valued, so is ν.

The quantities f(x) and g( y) are defined by optimization problems. We
can bound the duality gap using feasible solutions to the duals of these
optimization problems.

Lemma 2.5. Given x∈X and yG(c, Q)∈Ŷ , let (x, λ ), (δL, δU),
(VL, VU, Z ) be feasible solutions to problems (11), (7), (8) respectively.
Then,

ν (x, y)⁄ (AxAb)TλC(cAcL)TδLC(cUAc)TδU

C(QAQL) · VLC(QUAQ) · VUCQ · Z. (28)

Proof. The main tool of this proof is the weak duality theorem. Since
we assumed that (x, λ ) is feasible for (11), it follows from the weak duality



JOTA: VOL. 116, NO. 3, MARCH 2003 571

theorem and the equality constraints in (11) that

g(c, Q)¤bTλA(1�2) xTQx

G−(AxAb)TλA(QxAATλ )TxC(1�2) xTQx

G−(AxAb)TλCcTxC(1�2) xTQx. (29)

Similarly, we have that

f c(x)⁄A(cL)TδLC(cU)TδU

G(cAcL)TδLC(cUAc)TδUCcT(−δLCδU)

G(cAcL)TδLC(cUAc)TδUCcTx (30)

and that

f Q(x)⁄A(QL) · VLC(QU) · VU

G(QAQL) · VLC(QUAQ) · VUCQ · (−VLCVU)

G(QAQL) · VLC(QUAQ) · VUCQ · ZCQ · (1�2)xxT. (31)

Combining (29), (30), (31), we obtain

ν (x, y)Gf (x)Ag (y)

Gf c(x)Cf Q(x)Ag (c, Q)

⁄ (AxAb)TλC(cAcL)TδLC(cUAc)TδU

C(QAQL) · VLC(QUAQ) · VUCQ · Z,

as required. �

Note that the bound in Lemma 2.5 depends on the particular choice of
the feasible variables of the corresponding dual problems. A better choice
of these variables will lead to better bounds. In particular, one can choose
values that optimize or nearly optimize the corresponding problems to get
the tightest possible bounds.

On the central path, the right-hand side of the inequality (28) takes a
much simpler form. From now on, we use µt (the standard notation for the
barrier problem parameter) to denote 1�t, the reciprocal of our barrier prob-
lem parameter.

Lemma 2.6. For a point (xt , yt)∈C , the following inequality holds:

ν (xt , yt)⁄ (n2C4 nCm)µt . (32)
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Proof. Note that the sets of variables (xt , λ t), (δL
t , δU

t ), (VL
t , VU

t , Zt)
that satisfy the systems of Eqs. (23)–(25) are feasible solutions to problems
(11), (7), (8). Therefore, (28) holds for (x, y)G(xt , yt). Since the expression
on the right-hand side of (28) can be obtained by simply adding Eqs. (23)–
(25), using Lemma 2.5 and recalling the description of the matrix E follow-
ing Eq. (25), we obtain the desired result. �

Lemma 2.6 is our motivation for developing an algorithm that follows
the central path to solve the problem (SPP). For points on the central path,
the duality gap converges to zero as the parameter t is increased. However,
it is often very hard to find points that are exactly on the central path and
we would like to develop a version of Lemma 2.6 for points that are close
to the central path in some well-defined sense. First, for notational con-
venience, we introduce a set of slack�surplus variables as follows:

wGA xAb, (33a)

rLGcAcL, rUGcuAc, (33b)

SLGQAQL, SUGQUAQ. (33c)

The following primal-dual measure of proximity to the central path is
a generalization of the measures used in interior-point methods for linear
and semidefinite programming and is also similar to the one suggested by
Sun, Zhu, and Zhao in Ref. 12:

∆(P, D, t)Gt�
∑

iG1

m

(wiλ iAµt)
2

C ∑
jG1

n

(rL
i δL

i Aµt)
2C ∑

jG1

n

(rU
i δU

i Aµt)
2

C ∑
iG1

n

(SL
jjV

L
jjAµt)

2C ∑
1⁄ iFj⁄n

(2SL
ij V

L
ijAµt)

2

C ∑
jG1

n

(SU
jj V

U
jjAµt)

2C ∑
1⁄ iFj⁄n

(2SU
ij V

U
ijAµt)

2

C��QZAµt I��2F

�
1�2

Gt��
w ° λAµt em

rL
° δLAµt en

rU
° δUAµt en

svec(SL) ° svec(VL)Aµt en (nC1)�2

svec(SU) ° svec(VU)Aµt en (nC1)�2

�
2

C��QZAµt I��2F�
1�2

. (34)
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Above,

PG(x, Q, λ , w, rl, ru, SL, SU)

denotes the primal variables and slacks and

DG(δL,δU, VL, VU, Z )

denotes the corresponding dual variables. The operator svec in the equation
above vectorizes a given nBn symmetric matrix U as follows:

svec(U )_ (u11 , 12u21 , . . . , 12un1 , u22 , 12u32 , . . . , 12un2 , . . . , unn)
T. (35)

The factor 12 is introduced so that svec is an isometry between S
nBn and

�n(nC1)�2 with their respective standard inner products. This operator was
discussed, e.g., in Ref. 8.

It is easy to verify that the measure ∆ is zero for only points on the
central path with xGxt , etc. When this local measure is small, we can bound
the global proximity measure ν as indicated in the lemma below.

Lemma 2.7. Given x∈X and yG(c, Q)∈Y , let (x, λ ), (δL, δU),
(VL, VU, Z ) be feasible solutions to problems (11), (7), (8) respectively.
Further, let w, rL, rU, SL, SU be as in (33) and let

PG(x, Q, λ , w, rl, ru, SL, SU) and DG(δL, δU, VL, VU, Z ).

Then,

∆(P, D, t)⁄θ (36)

implies that

ν (x, y)⁄ (n2C4nCm) (1Cθ�1n2C4nCm)µt . (37)

Proof. From Lemma 2.5, we have that

ν (x, y)⁄wTλC(rL)TδLC(rU)TδUCSL · VLCSU · VUCQ · Z.

For a given nBn matrix A, let diag(A) denote the n-dimensional vector
consisting of the diagonal entries of the matrix A. Then,

Q · ZGtrace(QZ )GeT
n diag(QZ ).
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Now, observe that

wTλC(rL)TδLC(rU)TδUCSL · VLCSU · VUCQ · Z

GeT
r �

w ° λ
rL
° δL

rU
° δU

svec(SL) ° svec(VL)

svec(SU) ° svec(VU)

diag(QZ )

� ,

with

rGn2C4nCm.

Let us denote the long vector on the right-hand side of the above equation
with ξ . Now, using the Cauchy–Schwarz inequality and the triangle
inequality, we have

ν (x, y)⁄ ��er �� ��ξ ��⁄1r (��ξAµt er ��Cµt ��er ��)

⁄1n2C4nCm (θC1n2C4nCm)µt

G(n2C4nCm) (1Cθ�1n2C4nCm)µt .

Since

��diag(QZ )Aµt e��⁄ ��QZAµt I��F ,

we have that

t��ξAµt er ��⁄∆(P, D, t)⁄θ ;

therefore, the last inequality above is also justified. �

Measures like ∆ have been used for describing the 2-norm neighbor-
hoods of the central path in convex optimization problems and also in the
development of short-step path-following algorithms. It is possible to
develop predictor-corrector type algorithms using the measure ∆ by gener-
ating iterates that satisfy inequality (36) for two alternating values of θ : a
smaller value for the corrector steps and a larger value for the predictor
steps. However, the level of nonlinearity in our problem makes the extension
of standard complexity analyses for such algorithms a nontrivial task. We
will not pursue such algorithms any further in this study and instead focus
on a specialization of the Nemirovski approach for saddle-point problems
outlined in Ref. 5.
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In Ref. 5, a fundamental work on self-concordant convex–concave
functions, Nemirovski extends some of the developments in Ref. 3 to the
case of saddle-point problems with convex–concave functions. One of the
key elements in this study is a proximity measure that works with only the
primal variables.

Recall the definition of the barrier functions for the sets X and Y

given in (18) and (19). Also, recall that F (x) is a self-concordant barrier for

X with parameter m and that G( y) is a self-concordant barrier for Y with
parameter n2C4n. Finally, recall the saddle-barrier function φ t defined in
(20),

φ t (x, y)Gφ t (x, c, Q)

Gtφ (x, y)CF (x)AG(y), (38)

for t¤0. Given (x̂, ŷ)∈X BY , we define the following restricted functions:

φ t
ŷ (x)_ tφ (x, ŷ)CF (x), ∀x∈X

0, (39)

φ t
x̂ (y)_ tφ (x̂, y)AG(y), ∀y∈Y

0. (40)

Note that φ t
ŷ (x) is a strictly convex function of x∈X

0 and φ t
x̂ (y) is a strictly

concave function of y∈Y
0, as long as t¤0. Furthermore, since φ (x, ŷ) is a

convex quadratic function of x when ŷ∈Y , and since φ (x̂, y) is a linear
function of y, using Proposition 3.2.1 (ii) and Proposition 3.2.2 of Ref. 3,
we conclude that φ t

ŷ (x) and Aφ t
x̂ (y) are strongly self-concordant functions

in their domains.
The magnitude of the progress made by a Newton step for minimizing

a given convex function ψ (z) can serve as a measure of proximity to the
minimizer of the function. The motivation behind such a measure is the
expectation that Newton steps will generate bigger improvements away
from a solution and only marginal improvements close to a solution, where
improvements are measured in an absolute sense.

Given a strictly convex function ψ ( · ) and a vector z in its domain for
which the Hessian ∇2ψ (z) is nonsingular, consider the following function:

η(ψ , z)_1∇ψT(z)[∇2ψ (z)]−1∇ψ (z). (41)

The quantity in the square-root on the right-hand side of the above
equation is the quadratic Taylor series approximation to the decrease in the
value of the function ψ by taking a full Newton step from the point z. In
Ref. 3, Nesterov and Nemirovski call η(ψ , z) the Newton decrement. In
Ref. 5, Nemirovski considers a generalization of the Newton decrement for
convex–concave functions. This generalized measure can be represented as
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follows in our case:

η(φ t , x, y)_1η2(φ t
y , x)Cη2(−φ t

x , y) , (42)

where

tH0 and (x, y)∈X
0BY

0.

Observe that the Hessian matrices ∇2φ t
y (x) and −∇2φ t

x (y) are positive defi-
nite for all (x,y)∈X

0BY
0. We are using the function η with two arguments

to denote the Newton decrement for a self-concordant function and the
function η with three arguments for the generalized Newton decrement for
convex–concave saddle functions; no confusion should arise. Note that
neither η(ψ , z) nor η(φ , x, y) is scale invariant; in fact,

η(αψ , z)G1αη(ψ , z),

and similarly for η(φ t , x, y). We will use η(φ t , x, y) as a measure of proxim-
ity to the central path C . First, we observe that this measure vanishes only
on the central path.

Proposition 2.1. For t¤0 and (x̂, ŷ)∈X
0BY

0, the Newton decre-
ment η(φ t , x̂, ŷ)G0 if and only if x̂Gxt , ŷGyt , where (xt , yt) are as in the
solution of (23)–(25).

Proof. First, assume that

η(φ t , x̂, ŷ)G0, for some t¤0 and (x̂, ŷ)∈X
0BY

0.

Since φ t
ŷ (x) is a strictly convex function of x∈X

0, and since Aφ t
x̂ (y) is a

strictly convex function of y∈Y
0 for t¤0, each with positive-definite

Hessian,

η(φ t , x̂, ŷ)G0

implies that

∇φ t
ŷ (x̂)G0 and ∇φ t

x̂ (ŷ)G0.

In turn, this indicates that x̂ minimizes φ t
ŷ ( · ) and that ŷ maximizes φ t

x̂ ( · ).
So, (x̂, ŷ) is a saddle point for φ t (x, y). Since Lemma 2.4 indicates that φ t

has a unique saddle point for each t¤0, (x̂, ŷ) must be this saddle point and
solves (23)–(25).

On the other hand, if (xt , yt) solves (23)–(25), it follows easily that

∇φ t
yt(xt)G0,

∇φ t
xt( yt)G0.

Therefore, η(φ t , xt , yt)G0. �
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We can prove also that, if we are close to the central path with respect
to the proximity measure η(φ t, x, y), then we are close to a saddle point.

Lemma 2.8. If (x̄, ȳ)∈X BY satisfies η(φ t , x̄, ȳ)⁄β with β⁄1�2,
then

ν (x̄, ȳ)Gf (x̄)Ag(ȳ)

⁄ (1C6β�1n2C4nCm)(n2C4nCm)µt . (43)

Proof. From the assumption that η(φ t , x̄, ȳ)⁄β and Eq. (41), it fol-
lows that there exists βx and βy satisfying

η(φ t
ȳ , x̄)⁄βx and η(−φ t

x̄ , ȳ)⁄βy ,

as well as

β2
xCβ2

y⁄β2.

Let us fix ȳ and consider

φ ȳ(x)_φ (x, ȳ). (44)

Also, recall

φ t
ȳ(x)Gtφ (x, ȳ)CF (x).

We argued above that φ t
ȳ(x) is a strictly convex function for every ȳ∈Y .

Because of the barrier property of the function F (x), we have that, for every
point x on the boundary of X and every strictly feasible sequence {xk}
such that {xk}→x, we have φ t

ȳ(xk)→S. Further, since ȳ∈Y
0, the strictly

convex quadratic function φ ȳ(x) is bounded below and grows faster than
the logarithmic barrier function F (x) along divergent feasible directions.
Therefore, the minimum of φ t

ȳ(x) is achieved. Indeed, there exists a unique
minimizer, say x̂t∈X

0, of the function φ t
ȳ(x). Then, we have that

∇φ t
ȳ(x̂

t)G0 or t∇φ ȳ(x̂
t)C∇F (x̂t)G0. (45)

The convex function φ ȳ is always underestimated by the first-order
Taylor approximation. Therefore, for any x∈X , we have

φ ȳ(x)Gφ (x, ȳ)¤φ ȳ(x̂
t)C(xAx̂t)T∇φ ȳ(x̂

t)

Gφ ȳ(x̂
t)Aµt (xAx̂t)T∇F (x̂t),

where the equality follows from (45). Furthermore, since F is a self-concor-
dant barrier function for X with parameter m, we have that

(xAx̂t)T∇F (x̂t)⁄m;
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see Eq. (2.3.2) in Ref. 3, p. 34. Now,

φ (x, ȳ)Gφ ȳ(x)¤φ ȳ(x̂
t)Amµt , ∀x∈X ,

and therefore,

g(ȳ)Gmin
x∈X

φ (x, ȳ)

¤φ ȳ(x̂
t)Amµt . (46)

Again, since F is a self-concordant barrier function for X with parameter
m, we have that, by definition,

�∇F (x)Th�⁄1m1hT∇2F (x)h.

Therefore,

F (x̂t)AF (x̄)⁄ (x̄Ax̂t)T∇F (x̂t)

⁄1m1(x̄Ax̂t)T∇2F (x̂t)(x̄Ax̂t).

Furthermore, since the function φ t
ȳ is also self concordant [see comments

following Eqs. (39) and (40)], using inequality (2.16) in Ref. 13, or equiv-
alently (79) in Ref. 5, we obtain

φ t
ȳ(x̄)Aφ t

ȳ(x̂
t)⁄Aη(φ t

ȳ , x̄)Alog[1Aη(φ t
ȳ , x̄)]

⁄AβxAlog(1Aβx)

⁄βx .

The first inequality holds since AxAlog(1Ax) is an increasing function for
x∈[0, 1), and the second inequality holds since βx⁄β⁄1�2. Similarly, using
(2.17) in Ref. 13 and βx⁄1�2, we have also

1(x̄Ax̂t)T∇2φ t
ȳ(x̂

t)(x̄Ax̂t)⁄η(φ t
ȳ, x̄)�[1Aη(φ t

ȳ , x̄)]

⁄βx�(1Aβx)⁄2βx .

Now, combining the above results, we obtain

φ ȳ(x̄)Aφ ȳ(x̂
t)Gµt [φ t

ȳ(x̄)Aφ t
ȳ(x̂

t)]Cµt [F (x̂t)AF (x̄)]

⁄βxµtC1m1(x̄Ax̂t)T∇2F (x̂t)(x̄Ax̂t)µt

⁄βxµtC1m1(x̄Ax̂t)T∇2φ t
ȳ(x̂

t)(x̄Ax̂t)µt

⁄ (1C21m)βxµt .

The second inequality above holds, since

∇2F (x̂t)�∇2φ t
ȳ(x̂

t).
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The final inequality combined with (46) indicates that

φ (x̄, ȳ)Ag(ȳ)⁄mµtC(1C21m)βxµt

⁄ (1C3βx�1m)mµt . (47)

After fixing x̄, a symmetric argument yields

f (x̄)Aφ (x̄, ȳ)⁄ (1C3βy�1n2C4n)(n2C4n)µt . (48)

Simple algebra with (47) and (48) produces the desired result. �

Now, we have the necessary machinery to present an algorithm. We
saw that the points on the central path C approach the set of saddle points
for the function φ . Further, we described two different ways of measuring
the proximity of trial solutions to the points on the central path. The next
section will introduce an algorithm that generates iterates that are close to
the central path in terms of the measure η described above and are progress-
ively closer to the set of saddle points for the function φ .

3. Algorithm and Its Analysis

3.1. Interior-Point Algorithm. We propose a short-step algorithm
below to find a saddle point of problem (SPP). This algorithm can be viewed
as a specialization of the short-step algorithm proposed in Ref. 5 and is also
related to the short-step path-following method for variational inequalities
described in Chapter 7 of Ref. 3. The method in Ref. 3 updates the central
path parameter t according to the formula

tCG(1Cδ�1θ )t,

where θ is the parameter of the barrier function for the domain of the
problem (n2C4nCm in our case) and δ is a small constant (δ⁄0.01 in our
case). Then, the method of Ref. 3 uses a single Newton step to find the new
iterate satisfying a proximity bound. In Ref. 5, Nemirovski develops an
alternative method that can replace δ above with a larger constant such as
1, but requires an inner iteration procedure (the so-called saddle Newton
method in Ref. 5, Section 4.2), which may take several steps, but a bounded
number of steps, to generate the next iterate.

Step 1. Initialization. Choose α and β that satisfy the relationships

γ _1.3[(1Cα )βCα1n2C4nCm]F1,

γ 2(1Cγ )�(1Aγ )⁄1.3β .
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Find t0H0 and (x0 , y0)∈X
0BY

0 satisfying η(φ t0, x0 , y0)⁄β .
Set kG0.

Step 2. Iteration k. Check the inequality

tkF(1�()(1C6β�1n2C4nCm)(n2C4nCm).

If satisfied, stop. Otherwise, go to Step 3.

Step 3. Update. Set

tkC1G(1Cα )tk .

Take a full Newton step,

(xkC1 , ykC1)G(xk , yk)A[∇2φ tkC1(xk , yk)]
−1∇φ tkC1(xk , yk).

Set kGkC1. Return to Step 2.

Our method and analysis offers a compromise between these two
approaches. We improve the constant δ to at least 0.1 from 0.01, but still
use a single Newton step between parameter updates as in the method in
Chapter 7 of Ref. 3. We present a significantly simpler algorithm than the
one presented in Ref. 5 and show that it suffices in our case to take a single
Newton step to generate a new iterate with a small Newton decrement.
Because of the inherent structure and properties of our problem, we can
give a more immediate reasoning for its complexity bounds.

Note that, for example, α and β can be chosen as

αG0.1�1n2C4nCm and βG0.1

to satisfy the condition in the initialization step.

3.2. Polynomiality of the Algorithm. The complexity analysis of the
saddle-point algorithm of Section 3.1 centers on the Newton decrement,
namely the measure η(φ t , x, y) that we introduced in the previous section.
We have shown already that, if the Newton decrement is small, then the
iterate is close to the central path in Lemma 2.8. The main task in this
section is to show that, when the central path parameter t is increased
slightly, a full Newton step will be admissible and will generate an iterate
that also has a small Newton decrement (Theorem 3.2). The combination
of these two results will lead to the polynomial convergence conclusion
(Theorem 3.3).

As mentioned above, our algorithm can be viewed as a specialization
of the algorithm in Ref. 5. Consequently, our analysis borrows from the
analysis in this work as well. For example, as in Proposition 5.3 of Ref. 5,
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we will show that our saddle-barrier functions, when multiplied with a suit-
able constant, are self-concordant convex–concave functions; see Theorem
3.1.

Let us start by defining the necessary terms. Nesterov and Nemirovski
(Ref. 3) showed that a large class of convex optimization problems can be
solved in polynomial time by introducing the notion of a self-concordant
function. The defining property of self-concordant functions is that their
third derivative can be bounded in a particular way by the second derivative,
so that the second derivative does not change rapidly. For such functions,
second-order approximations are satisfactory, Newton steps can be taken
confidently and lead to significant improvements. If the feasible set of the
problem at hand has an associated self-concordant barrier function, poly-
nomially convergent algorithms can be developed readily.

For convex–concave saddle functions, Nemirovski (Ref. 5) introduced
a similar notion of self-concordant convex–concave (s.c.c.c.) functions. The
following is Definition 2.2 of Ref. 5.

Definition 3.1. Let X,Y be open convex domains in Rn and Rm, and
let

f (x, y): XBY→R

be a C3 function. We say that the function is s.c.c.c if f is convex in X for
every y∈Y, concave in y∈Y for every x∈X, and subject to (i) and (ii) below:

(i) for every x∈X, −f(x, · ) is a barrier for Y, and for every
y∈Y, f ( · , y) is a barrier for X;

(ii) for every zG(x, y)∈XBY and for every dzG(dx, dy)∈RnBRm,

�D3f (z)[dz, dz, dz]�⁄2[dzTSf (z)dz]3�2, (49)

where

Sf (z)G�∇
2
xxf (z) 0

0 −∇2
yyf (z)� .

We see that, if F (x) is a self-concordant barrier for X and G( y) is a
self-concordant barrier for Y, then F (x)AG(y) is a s.c.c.c. barrier for
XBY. Conversely, if f (x, y): XBY→R is a s.c.c.c. function, then the func-
tion f ( · , y) is self-concordant on X for every y∈Y and the function
Af (x, · ) is self-concordant on Y for every x∈X. Similar to the case of self-
concordant functions, we have that the Newton method for saddle functions
will have quadratic local convergence if the saddle function is s.c.c.c.; see
Ref. 5, Theorem 4.1.
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We will show that, for all t¤0 and for a properly chosen Γ¤1, the
saddle-barrier functions Γφ t (x, y) are self-concordant convex–concave func-
tions. To obtain this conclusion, we need to bound the third derivative of
these functions in terms of their second derivatives. Since we know already
that the barrier part F (x)AG(y) of these functions is s.c.c.c., all we need is
to show that the function φ (x, y) is compatible with the self concordance of
the barrier terms in a well-defined manner. Lemma 3.1 below establishes
this result. In Lemma 3.1 and later in the paper, for a given positive-definite
matrix B, we use the notation ��u��B to denote the induced norm, i.e.,

��u��BG1uTBu.

We also use G″( · ) as a short-hand notation for the Hessian of G.

Lemma 3.1. For every (x, y)∈X
0BY

0 and hG(u, û)∈�nB
(�nBS

n), the function

φ (x, y)Gφ (x, c, Q)

GcTxC(1�2)xTQx

satisfies the following inequality:

�D3φ (x, y)[h, h, h]�⁄3uTQu��û��G″(y) .

Proof. We start by evaluating the differentials of the function φ . Let

ûc∈�n, VQ∈S
n be such that ûG(ûc , VQ). Then, we have

Dφ (x, c, Q)[h]GcTuCûT
c xCuTQxC(1�2)xTVQx,

D2φ (x, c, Q)[h, h]G2ûT
c uCuTQuC2uTVQx,

D3φ (x, c, Q)[h, h, h]G3uTVQu.

Next, defining

π_πy (ûc , VQ)

_ inf{u� (c, Q)Ju−1(ûc , VQ)∈Y }

¤ inf{u�QJu−1VQ� 0},

we have

−πQ�VQ�πQ. (50)

Noting that, for the self-concordant function G( y) on Y , the norm
�� · ��G″(y) majorizes the function πy [see Theorem 2.1.1 (ii) in Ref. 3], we
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conclude that

−��û��G″(y)Q�VQ� ��û��G″(y)Q. (51)

Putting all the pieces together, we obtain

�D3φ (x, y)[h, h, h]�G3�uTVQu�G3�〈uuT, VQ 〉�

⁄3π �uTQu� (52)

⁄3uTQu��û��G″(y). (53)

�

According to the terminology introduced in Refs. 3 and 5, inequality
(52) shows that the function φ (x, y) is 3-regular on X BY , and inequality
(53) shows that φ (x, y) is 3-compatible with the barrier function
F (x)CG(y) on the set X

0BY
0. Now, we are ready to prove our self-con-

cordance result.

Theorem 3.1. Define ft ( · , · )GΓφ t ( · , · ), where Γ¤1.69. Then, each
member of the family {ft ( · , · )}t¤0 is a self-concordant convex–concave
function.

Proof. For all t¤0, each ft ( · , · ) satisfies clearly the convexity and
barrier properties in Definition 3.1, and it suffices to show that each such
function satisfies also (49). As before, consider

(x, y)∈X
0BY

0 and hG(u, û)G(u, ûc , VQ)∈�nB�nBS
n.

From Lemma 3.1, we have that

�D3tφ (x, y)[h, h, h]�⁄3tuTQu��û��G″(y).

Let a1 , a2H0 be such that

a1a2G3;

their precise values will be determined later. Using the Hölder inequality on
the right-hand side of the expression above, we obtain

�D3tφ (x, y)[h, h, h]�

⁄ (2�3)(a1 tu
TQu)3�2C(1�3)(a2 ��û��G″(y))

3. (54)

To simplify the notation, let

ωGtuTQu, ζG��u��F″(x) , ηG��û��G″(y) .
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Also, let

b1Ga3�2
1 �3 and b2Ga3

2�3.

The second inequality below is a direct consequence of the self concordance
of F and G on their domains and (54):

�D3ft (x, y)[h, h, h]�

⁄Γ(�D3tφ (x, y)[h, h, h]�C�D3F (x)[u, u, u]�C�D3G(y)[û, û, û]�)

⁄Γ(2b1ω3�2Cb2η3C2ζ3C2η3).

Noting that

hTSft(x, y)hGΓ(ωCζ2Cη2),

the following inequality will imply (49):

Γ2[2b1ω3�2C2ζ3C(2Cb2)η3]2⁄4Γ3(ωCζ2Cη2)3. (55)

After expanding and comparing both sides of this expression and using
inequalities such as

ωη4Cω2η2¤2ω3�2η3 ,

one can verify that

Γ¤b2
1 , Γ¤1, Γ¤ (2Cb2)

2�4 ,

Γ¤ (2Cb2)�6, Γ¤b1�3, Γ¤b1(2Cb2)�6

form a set of sufficient conditions for (55) to hold. Since a1 and a2 (and
therefore, b1 and b2) were arbitrary except for the condition that a1a2G3,
we can choose them optimally to obtain the weakest bounds on Γ. This is
achieved by choosing

a1�2.474,

which then gives

a2�1.213, b1�1.297, b2�0.594.

For this choice, we see that all values Γ¤1.69 satisfy the sufficient con-
ditions listed above. Therefore, all Γφ t ( · , · ) are self-concordant convex–
concave functions as long as Γ¤1.69. �

Theorem 3.2. Let ti and (xi , yi)∈X
0BY

0 satisfy η(φ ti , xi , yi)⁄β ,
where β is chosen as prescribed in the algorithm of Section 3.1. Further,
let tiC1 and (xiC1 , yiC1) be computed as in the same algorithm. Then,

η(φ tiC1 , xiC1 , yiC1)⁄β (56)

is also satisfied.
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Proof. First, we will find a bound on η(φ tiC1 , xi , yi), i.e., the Newton
decrement with the old point and the new barrier parameter. We have

η(φ tiC1
yi , xi)G1∇Tφ tiC1

yi (xi)[∇2φ tiC1
yi (xi)]

−1∇φ tiC1
yi (xi)

G��∇φ tiC1
yi (xi) ��[∇2φ tiC1

yi (xi)]
−1

G�� (1Cα )∇φ ti
yi(xi)Aα∇F (xi) ��[∇2φ tiC1

yi (xi)]
−1

⁄ (1Cα ) ��∇φ ti
yi(xi) ��[∇2φ tiC1

yi (xi)]
−1Cα ��∇F (xi) ��[∇2φ tiC1

yi (xi)]
−1

⁄ (1Cα ) ��∇φ ti
yi(xi) ��[∇2φ ti

yi(xi)]
−1Cα ��∇F (xi) ��[∇2F (xi)]

−1

G(1Cα )η(φ ti
yi , xi)Cα1m.

Above, the first inequality follows from the triangle inequality and the
second inequality uses the fact that

∇2φ tiC1
yi (xi)�∇2φ ti

yi(xi)�∇2F (xi),

which implies the reversed order for the inverses. The final equality holds,
since F is a logarithmically homogeneous self-concordant barrier function
with parameter m; see e.g. Proposition 2.3.4 in Ref. 3, p. 41.

A symmetric argument yields

η(−φ tiC1
xi , yi)⁄ (1Cα )η(−φ ti

xi , yi)Cα1n2C4n.

Combining, we have

η2(φ tiC1 , xi , yi)⁄ (1Cα )2[η2(φ tiC1
yi , xi)Cη2(−φ tiC1

xi , yi)]Cα2(n2C4nCm)

C2α (1Cα )[1mη(φ tiC1
yi , xi)C1n2C4nη(−φ tiC1

xi , yi)]

⁄ [(1Cα )η(φ ti , xi , yi)Cα1n2C4nCm]2.

The second inequality above can be verified by expanding the last term,
canceling common terms on both sides of the inequality, squaring the
remaining terms, and using the following inequality:

(δ1Cδ2)(γ 2
1Cγ 2

2)A(1δ1γ1C1δ2γ2)
2G(1δ2γ1A1δ1γ2)

2¤0,

with

δ1Gm, δ2Gn2C4n, γ1Gη(φ tiC1
yi , xi), γ2Gη(−φ tiC1

xi , yi).

Recall from Section 3.1 that

γ G(13�10)[(1Cα )βCα1n2C4nCm].

Since η(φ ti , xi , yi)⁄β , we get

η(φ tiC1 , xi , yi)⁄ (10�13)γ . (57)
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Consequently, the self-concordant convex–concave function 1.69φ tiC1(xi , yi)
(see Theorem 3.1) satisfies

η(1.69φ tiC1 , xi , yi)⁄γF1.

Now, we can apply the results in Ref. 5. In particular, using Proposition
2.3.2(a) and Proposition 4.1.4(a) in Ref. 5, we have that our algorithm gen-
erates strictly feasible iterates; i.e.,

(xiC1 , yiC1)∈X
0BY

0.

Furthermore, from (48) in Ref. 5 as well as our choices for α and β , we get

η(1.69φ tiC1 , xiC1 , yiC1)⁄γ 2(1Cγ )�(1Aγ )

⁄ (13�10)β ,

and therefore,

η(φ tiC1 , xiC1 , yiC1)⁄ (10�13)γ 2(1Cγ )�(1Aγ )

⁄β ,

concluding our proof. �

Finally, we present our polynomial complexity result.

Theorem 3.3. The saddle-point algorithm in Section 3.1 finds a feas-
ible point (x, y) with ν (x, y)⁄( in O (1n2C4nCm log(1�()) iterations.

Proof. We omit the standard proof which follows from Lemma 2.8
and Theorem 3.2. �

One issue that we did not discuss is the initialization, i.e., how to find
t0H0 and (x0 , y0)∈X

0BY
0 satisfying η(φ t0 , x0 , y0)⁄β to start the algo-

rithm. The algorithm can be initialized by solving approximately the
analytic center problems over X and Y , which can be done in.
O (1n2C4nCm log(1�()) time. This will give an approximation, say
(x0 , y0), to the saddle point of the pure barrier function φ0(x, y). Then, t0
can be chosen as the largest t satisfying η(φ t0 , x0 , y0)⁄β .

4. Application: Robust Portfolio Optimization

Now, we describe an application of the approach outlined in the pre-
vious sections to a problem, that originally motivated this study. In 1952,
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Markowitz developed a model of portfolio selection that quantified the
tradeoff between return and risk, using the expected returns and variances
of portfolios (Ref. 14). This model uses estimates of the expected returns on
a number of securities with random returns as well as a covariance matrix
that describes their interdependencies.

Mathematically, the Markowitz mean-variance optimization problem
can be stated as

max
x∈X

µTxAλxTQx, (58)

where µi is an estimate of the expected return of security i, qii is the variance
of this return, qij is the covariance between the returns of securities i and j,
λ is a risk-aversion constant. X is the set of feasible portfolios which may
carry information on short-sale restrictions, sector distribution require-
ments, etc. Since such restrictions are predetermined, we can assume that
the set X is known without any uncertainty at the time the problem is
solved. Solving the problem above for different values of λ , one obtains
what is known as the efficient frontier of the set of feasible portfolios. The
optimal portfolio will be different for individuals with different risk-taking
tendencies, but it will be always on the efficient frontier.

One of the limitations of this model is its need to estimate accurately
the expected returns and covariances. In Ref. 15, Bawa, Brown, and Klein
argue that using estimates of the unknown expected returns and covariances
leads to an estimation risk in portfolio choice, and that methods for the
optimal selection of portfolio must take into account this risk. Furthermore,
the optimal solution is sensitive to perturbations in these input parameters
(a small change in the estimate of the return or the variance may lead to a
large change in the corresponding solution); see, for example, Refs. 16 and
17. This attribute is unfavorable, since the modeler may want to rebalance
periodically the portfolio based on new data and may incur significant trans-
action costs to do so. Furthermore, using point estimates of the expected
return and covariance parameters does not respond to the needs of a con-
servative investor who does not necessarily trust these estimates and would
be more comfortable choosing a portfolio that will perform well under a
number of different scenarios. Of course, such an investor cannot expect to
get better performance on some of the more likely scenarios, but will have
insurance for more extreme cases. All these arguments point to the need of
a portfolio optimization formulation that incorporates robustness and tries
to find a solution that is relatively insensitive to the inaccuracies in the input
data.

For robust portfolio optimization, we propose a model that allows the
return and covariance matrix information to be given in the form of inter-
vals. For example, this information may take the form ‘‘the expected return
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on security j is between 8% and 10%’’ rather than claiming that it is 9%.
Mathematically, we will represent this information as membership in the
following set:

U G{(µ, Q): µL⁄µ⁄µU , QL⁄Q⁄QU , Q� 0}, (59)

where µL , µU , QL , QU are the extreme values of the intervals that we just
mentioned. The restriction Q� 0 is necessary, since Q is a covariance matrix
and therefore must be positive semidefinite. These intervals may be gener-
ated in different ways. An extremely cautious modeler may want to use the
historical lows and highs of certain input parameters as the range of their
values. One may generate different estimates using different scenarios on
the general economy and then combine the resulting estimates. Different
analysts may produce different estimates for these parameters, and one may
choose the extreme estimates as the endpoints of the intervals. One may
choose a confidence level and then generate estimates of the covariance and
return parameters in the form of prediction intervals.

Given these considerations, the robust optimization problem that we
propose is to find a portfolio that maximizes the objective function in (58)
in the worst-case realization of the input parameters µ and Q from their
uncertainty set U in (59). Mathematically, this can be written as

max
x∈X

� min
(µ, Q)∈U

µTxAλxTQx� , (60)

which is equivalent to

min
x∈X

� max
(µ, Q)∈U

AµTxCλxTQx� .

For fixed λ , this problem is exactly in the form (9) and therefore can be
solved using the algorithm that we developed in the previous section.

We conclude this section by noting that robust portfolio optimization
approaches can be implemented also in the framework of factor models,
i.e., when the interdependencies of stock returns are explained through a
small number of factors. In Ref. 18, Goldfarb and Iyengar investigate such
problems and show that, in this case, the robust portfolio selection problem
reduces to a second-order cone programming problem when the uncertainty
sets are ellipsoids. Second-order cone problems can be solved efficiently
using interior-point approaches similar to the one presented in the previous
section.
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5. Comments and Conclusions

This study provides a modeling framework where one tries to solve a
quadratic programming problem with an uncertain objective function that
is known to be a convex function. As the previous section indicates, such
modeling environments arise in portfolio optimization. Other situations
where this model is appropriate include problems that have an uncertain
cost structure that reflects diseconomies-of-scale and hence convexity. Simi-
larly, problems with diminishing returns lead to formulations that are neces-
sarily convex optimization problems even when their inputs are uncertain.

For such environments, we developed a robust optimization strategy.
Although it may appear conservative, this strategy is appropriate in situ-
ations where the modeler would like to hedge against all possible realiza-
tions of the uncertain input parameters. In this sense, robust optimization
presents an alternative approach to stochastic programming. In the stochas-
tic optimization framework, one needs to estimate probability distributions
for the model which can be a difficult task because of limited data avail-
ability. As a result, a stochastic optimization modeler may need to make
unjustified assumptions on the distributions and end up overinterpreting the
data. Robust optimization approach avoids such pitfalls.

Our formulation and the analysis of the algorithm provides a generaliz-
ation of some of the previous works on use of interior-point methods for
saddle-point problems. We rely on the techniques developed in Refs. 3 and
5 that exploit the properties of self-concordant barrier functions. Future
work on the approach introduced here will include the development of an
efficient strategy to generate the search directions prescribed by the interior-
point algorithm.
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