Islands of Tractability for Parsimony

Haplotyping

Roded Sharan, Bjarni V. Haltdsson and Sorin Istrail

Abstract

We study the parsimony approach to haplotype inference, which calls for finding a set of haplotypes
of minimum cardinality that explains an input set of genotypes. We prove that the problem is APX-hard
even in very restricted cases. On the positive side, we identify islands of tractability for the problem,
by focusing on instances with specific structure of haplotype sharing among the input genotypes. We
exploit the structure of those instance to give polynomial and constant-approximation algorithms to the

problem. We also show that the general parsimony haplotyping problem is fixed parameter tractable.
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. INTRODUCTION

Single nucleotide polymorphisms (SNPs) are differences in a single base, across the popu-
lation, within an otherwise conserved genomic sequence. SNPs are the most common form of
variation of DNA sequences among individuals. Especially when occurring in coding or otherwise
functional regions, variations in SNP content are linked to medical condition or may affect drug
response.

A SNP commonly has two variants, alleles in the population, corresponding to two of the
four genomic lettersi, C', G, andT'. The sequence of alleles in contiguous SNP positions along a
chromosomal region is calledraplotype For diploid organisms, thgenotypespecifies for every
SNP position the particular alleles that are present at this site in the two chromosomes. Genotype
data contains information only on the combination of alleles at a given site, and does not reveal
the association of each allele with one of the two chromosomeshi#tse Current technologies,
suitable for large-scale polymorphism screening only yield the genotype information at each
SNP site. The actual haplotypes in the typed region can be obtained at a considerably higher
cost [23]. Due to the importance of haplotype information for inferring population history and
for disease association, it is desirable to develop efficient methods for inferring haplotypes from
genotype information.

Numerous approaches have been suggested in the literature to resolve haplotypes from geno-
type data. These methods include the seminal approach of Clark [4] and related parsimony
approaches [9], [10], [12]; maximum likelihood methods [5], [6], [16], [21]; Bayesian methods

such as PHASE [26], HAPLOTYPER [22] and HaploBlock [8]; and perfect-phylogeny-based



approaches [11], [1], [14]. The reader is referred to [13] for a survey on different formulations
of the haplotyping problem.

Here we focus on th@arsimony haplotyping (PHjproblem, where the input is a set of
genotypes and the goal is to find a minimum set of haplotypes that explains them (a formal
definition of PH is deferred to Section Il). Parsimony is a natural criterion for choosing a
solution in many domains. This is particularly true for haplotyping, since the number of distinct
haplotypes observed in a population is much smaller than the number of possible haplotypes, due
to population bottleneck effects and genetic drift. For example, Patil et al. report that within short
genomic regions, typically, some 70-90% of the haplotypes belong to very few (2-5) common
haplotypes [23].

There has been extensive research on the parsimony haplotyping problem. Hubbell has shown
that the problem is NP-complete [18]. Lin et al. have investigated a related problem and showed
that it is NP-complete as well [20]. A practical integer programming approach for it was devised
by Gusfield [12]. Recently, Lancia et al. [19] have shown that the problem is APX-hard and have
given a2 !-approximation algorithm for the problem, for data sets in which each genotype
has at mostt ambiguous positions. Huang et al. [17] have given(afog n)-approximation
algorithm for the problem, for data sets in which there is a polynomial number of haplotypes to
be considered.

In this paper we study the complexity and approximability of parsimony haplotyping and its
restrictions. We characterize instances of the problem by the number of ambiguous sites they
contain and the structure of @ark-consistency graplwhose vertices correspond to genotypes
and whose edges represent sharing of haplotypes. On the negative side, we show that parsimony

haplotyping is APX-hard even when the input instances have small numbers of ambiguous sites



per genotype or SNP; when the corresponding Clark-consistency graph is a clique; or when the
Clark-consistency graph is bipartite. On the positive side, we show that the problem is fixed
parameter tractable, and give polynomial algorithms and approximation algorithms for some of
its restrictions. Specifically, we give a polynomial algorithm for PH on cliques when each SNP
has at most two genotypes in which it is ambiguous. We also give a polynomial algorithm for PH
when the Clark-consistency graph has bounded treewidth. Finally, we give a 1.5-approximation
algorithm for PH when the input instance induces a bipartite Clark-consistency graph.

The paper is organized as follows: Section Il provides background on the problem. The
complexity of parsimony haplotyping is analyzed in Section lll. Restrictions of the problem

are studied in Sections 1V-VI.

[I. PRELIMINARIES

A haplotypeis a row vector with binary entries. Each position in the vector indicates the state
(0 or 1) of a certain SNP in this haplotype. For a haplotypéet h[i] denote theith position
of h. A genotypeis a row vector with entries i{0, 1,2}, each corresponding to a SNP site.
A genotype matrixs a matrix whose rows are genotypes. We denote the number of genotypes
by n. Two haplotypesh; and h, explaina genotypeg, denoted byh, & hy = g, if for each
position: the following holds:g[i] € {0,1} implies h;[i] = hso[i] = g[i]; and g[i] = 2 implies
hili] # heli]. If hli] = g[i] wheneverg[i] € {0,1} thenh is said to beconsistentwith g.

A haplotype that is consistent with two genotypes is said tshmedby them. Given a set
of genotypes, the graph containing the genotypes as nodes and an edge between two genotypes
if and only if they share a haplotype is called tBéark-consistency graphThis definition is
inspired by Clark’s rule for haplotype inference [4] as is explained belowkA)-bounded

instanceis an input genotype matrix with at moat2-entries per row and at most2-entries



per column, where an asterisk insteadkadr [ indicates no constraint. Aeanumerablénstance
is an input genotype matrix with a polynomial number of haplotypes that are consistent with
any of its genotypes or, equivalently, af({ogn),*)-bounded instance.

The parsimony haplotyping problem is formally defined as follows:

Problem 1 (Parsimony Haplotyping (PH))Given a set of genotypes, find a minimum set of
haplotypesH such that each genotype can be explained by two haplotypes ffom

A related problem concerns identifying haplotypes that are consistent with the input set of
genotypes:

Problem 2 (Minimum Haplotype Consistency (MHC#iven a set of genotypes, find a min-
imum set of haplotypeé/ such that each genotype is consistent with some elemeft. of

Inference paths in the Clark-consistency graph are defined as follows: For a haplaayyke
a genotypegy that is consistent with it, amference paths a path in the Clark-consistency graph
that starts aiy and is created as follows: (1) lgt= h @ h; (2) move to a genotype’ that is
consistent withh if such exists and was not visited already; (3) get ¢/, h = h and go to step
(1). The path terminates when it reaches a haplotypghose complement is consistent with

genotypes in the path only. Itengthis defined to be its number of edges.

[11. COMPLEXITY OF PARSIMONY HAPLOTYPING

The general parsimony haplotyping problem is known to be NP-complete [18] and APX-
hard [19], and, hence, unlikely to admit a polynomial time approximation scheme. In fact, the
construction in the hardness proof of Lancia et al. [19] shows that the problem is APX-hard
already for(3, *)-bounded instances. In the following we strengthen their result and prove that
parsimony haplotyping is APX-hard even f@t, 3)-bounded instances.

Theorem 1:Parsimony haplotyping is NP-hard f¢t, 3)-bounded instances.



Proof: We give a reduction from 3-Dimensional Matching with each element occurring
in at most 3 triples (3DM3) [7]: given disjoint sefs, Y, Z containingr elements each, and a
setC = {cg,...,c,—1} Of p triples in X x Y x Z such that each element occurs in at most
three triples ofC, find a maximum cardinality set” C C' of disjoint triples (a 3-dimensional
matching).

We build a genotype matrix witl3v + 3 rows and6r + 4 columns. The firsBy rows
are calledelement genotypesnd represent the elements of the 3DMS3 instance. The Gjler
rows are callednatching genotypeand represent the triples. The fifst columns are used to
ensure that for each element genotype, at most one of its haplotypes can be shared. Bhe next
columns ensure that element genotypes do not share haplotypes with each other; they can only
share haplotypes with genotypes corresponding to triples they occur in. Thenexumns
represent the triples and restrict the sharing of haplotypes among the matching genotypes, as
described below.

The construction of the genotype matrix is based on the gadget shown in Figure 1. For each
elementzr; € X, y; € Y, or z; € Z we construct one genotype. In the following we specify for
each genotype its non-zero entries only.

o x;l1] = 2; x;[3v +i] =1, x;[6v + 4] = 2 for all j such thatz; € ¢;.

o yilv+i] =2; y;[dv +i] = 1; y;[6v + 44] = 2 for all j such thaty; € c;.

o zi[2v+1d] =2; z[br + 1] = 1; z][6v + 45] = 2 for all j such thatz; € ¢;.

For each triplec; € C' we create 3 genotypes, whose non-zero entries are:

o ¢f[3v +1] =2 for i such thaty; € ¢;; cj[6v +4j] = 1; cf[6v +4j + 1] = 2.

o cf[4v +i] = 2 for i such thaty; € c;; ci[6v +4j] = 1; c[6v + 45 + 2] = 2.

o Ci[5v +i] = 2 for i such thaty; € cj; ci[6v + 4j] = 1; c5[6v + 45 + 3] = 2.



zi |2 0 0{1 0 0{2 0 0 O
v |10 2 0{0 1 0{2 0 0 O
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Fig. 1. Gadget for the reduction in Theorem 1.

The resulting genotype matriX is (4, 3)-bounded. Indeed, each element genotype contains
exactly one 2-entry in one of the fir8t columns and at most three other 2-entries representing
the triples in which the element occurs. Each matching genotype has exactly two 2-entries. For
the bound on the columns, observe that the fitsicolumns contain one 2-entry; the ne
columns have at most three 2-entries, since their corresponding elements occur in at most three
triples. The lastl;, columns contain at most three 2-entries each.

We now claim thatA has a parsimony solution of cardinality + 4 — w if and only if
C has a matching of size. First, observe that every set of three matching genotypes can be
phased using four haplotypes, none of which can be shared with the element genotypes, or using
6 haplotypes, 3 of which (left column) can be shared with element genotypes, as depicted in
Figure 2.

For the 'if’ part, suppose that’ has a matching of size. For eachc € C' we phase the
corresponding matching genotypes using the temp@Pateas shown in Figure 2. Three of those
six haplotypes can be used to phase the corresponding element genotypes, where each element

genotype requires one additional haplotype to complete its phasing. Overall, the phasifig uses



(0001001100) &  (0000001000) (0002001200) (0001001000) &  (0000001100)
4
(0000101010) &  (0000001000) (0000201020) (0000101000) @  (0000001010)

(0000011001) @  (0000001000) (0000021002) (0000011000) &  (0000001001)

Fig. 2. The three matching genotypes corresponding to a triple and alternative phasings of these génosiyme.a minimal
phasing with 4 haplotypes, none of which can be shared with the element gend®ps&sows a phasing using 6 haplotypes,

3 of which can be shared with the element genotypes.

haplotypes for this set of genotypes. The remaining element genotypes can be phased arbitrarily
using two haplotypes each. The remaining matching genotypes can be phased usihg the
template by 4 haplotypes each, as shown in Figure 2. In total, the phasing inéludeg -
3(v—w)+4(p — w) = 6v + 4u — w haplotypes.

Conversely, given a phasing af using6r + 4u — w haplotypes, we can construct a matching
of size w, by letting our matching be those triples whose corresponding matching genotypes
share haplotypes with all three of their element genotypes. By construction, element genotypes
cannot share haplotypes among themselves, so their phasing re@uineplotypes. Consider
any triplet of matching genotypes. These genotypes can only share haplotypes with each other
or with the corresponding element genotypes. Furthermooan share at most 3 haplotypes
with its element genotypes. tfshares exactly 3 haplotypes with its element genotypes (in the
given phasing) then, by construction, it is phased using 6 haplotypes in totakhires less
than 3 haplotypes with its element genotypes, it must be phased using 4 additional haplotypes
that are not shared with the element genotypes. Hence, the resulting matching has size at least
w. ]

Corollary 1: Parsimony haplotyping is APX-hard fg#, 3)-bounded instances.

Proof: Petrank [24] has shown that it is NP-hard to determine whether a maximum matching

of a 3DM3 instance is perfect or misses a constant fractiohthe elements. In the first case,



our genotype instance admits a solution of cardindlity+ 44; in the second case, it admits a
solution of cardinality at mosiv + 4. + ev. The claim follows. [ |

We now show that the related problem of ‘covering’ the input genotypes is hard as well.

Theorem 2:MHC is NP-complete.

Proof: The problem is clearly in NP. We reduce fromLIQUE COVER [7]. Given an

instance of CIQUE COVER, consisting of a grapliz = ({1,...,n}, E) and an integek, we
build ann x n genotype matrix as follows: For each vertewe have a corresponding row.
We setr; = 1. For all vertices;j that are adjacent towe setr; = 2. All other entries ofr* are
set to 0. It is easy to see that a haplotype is consistent with a set of genotypes (rows) if and only
if the corresponding vertices form a clique G Hence, there is a 1-1 correspondence between
solutions to CIQUE CoVER and solutions to the MHC instance. [ |

We note that a similar reduction fromL@QUE shows that even the problem of identifying a
haplotype that is consistent with a maximum number of genotypes is NP-hard. Moreover, these
reductions also show that both problems are NP-hard to approximate to within a factor of
unless NP=ZPP [15].

On the positive side, we now show that PH is fixed parameter tractable with respect to the
cardinality of the solution set of haplotypes.

Theorem 3:Parsimony haplotyping is fixed parameter tractable with respect to to the number
of haplotypes in the solution set.

Proof: Fixing the number of allowed haplotypes toimplies that the maximum number

of distinct genotypes possible fé’“;—l) Let m be the length of the input genotypes. Denote the
unknown haplotypes in an optimal solution by, .. ., h;. For each genotype, we can enumerate

the pair of indices of the solution haplotypes that explain it. The problem is then reduced to
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solving m sets of linear equations over GF(2). Each set of equations involves at most two
variables per equation and can be viewed as a 2-SAT instance. Hence, resolving the haplotypes
given their assignment to genotypes can be don@(imk?) time, and the overall complexity
of the algorithm isO(mk***%). u

The rest of the paper concerns identifying islands of tractability for parsimony haplotyping. We
show positive results for instances in which the Clark-consistency grapk & gbounded clique
or has bounded treewidth, as well as approximation algorithms for several variants, including

instances for which the Clark-consistency graph is bipartite.

IV. PARSIMONY ON CLIQUES

In this section we study complete Clark-consistency graphs (cliques), corresponding to in-
stances in which every two genotypes share a haplotype. We call such an instahgeea
instance For a clique instance, every column in the genotype matrix can contain at most two
values (out of{0,1,2}), one of which is 2. W.l.o.g., we shall consider matrices with only 0-s
and 2-s. In particular, the all-zero haplotype is shared by all the genotypes and istceiédd
When the input instance contains the all-0 genotype, any solution to it must contain the trivial
haplotype. For ease of presentation, we assume in the following that the input instance does not
contain the all-O genotype.

Theorem 4:Parsimony haplotyping is NP-hard on cliques.

Proof: We give a reduction from 3DMS3, similar to that in the proof of Theorem 1. The
input to the 3DM3 instance includes disjoint s&sY, Z containingr elements each, and a set
C ={cy,...,cy—1} of ptriples in X x Y x Z. Let vy, 1, denote the number of elements that
only occur inl or 2 triples, respectively. We build a genotype matfixwith 21v + 6. rows and

6v + 44+ 81 + 4, columns. The firsR1r rows are calleclement genotypeand represent the
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elements of the 3DM3 instance. The otlégrrows are callednatching genotypeand represent
the triples.

To ensure that every element occurs in exactly three sets, we start by consttugting,
singleton sets. Each element that occurs in two triples is assigned to one singleton set, and each
element that occurs in one triple is assigned to two singleton sets. We label the singleton sets
cut1 throughe, tou, 40,

For theith elementy € X UY U Z, occurring in sets (triples or singleton sets), c;, andc;,,
we construct seven element genotypes .., v, (see Figure 3). Let, =1if ye X, [, =2f
veY,andl, =3 if y € Z. The 2-entries ofy,, 1 <k <7, are as follows:

o W[2i] = 20f k<35 yp[2i +1] = 2.

o 6+ 451 =wlbv+4i +1])=21if ke {2,3,5,6,7}.

o 6V +4jo] = wlbv +4ja+ 1) =210f ke {1,3,4,6,7}.

o V6V +4js] = wl6v +4js+ 1] =21if ke {1,2,4,5,7}.

For each triplec; € C' we create six matching genotype;s. . ,c?, whose 2-entries are:

o Gl6r+4j] =21if k<3

e 6 +4j+r+1] =2, wherer =k—1 (mod 3).

Note that the construction of the matching genotypes implies that the trivial haplotype and each
of the haplotypes that have a single 1-entry in one of the coluimns4; +r,r € {1,2,3},j €
{0,...,n— 1} will necessarily be included in any solution to the PH instance.

The construction ensures that if genotypes of different elements share a non-trivial haplotype,
then the elements are members of the same triplend the haplotype has a single 1-entry at
column6r +4j. Also, only the trivial haplotype can be shared between matching genotypes that

are not part of the same triple, or between a matching genotype and an element genotype that is
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Y12 2/0 02 2|2 2
Y212 212 2(0 02 2

w2 202 22 2|0 0

v |0 2]0 02 2(2 2
w10 212 210 0/2 2

w|0 212 212 210 0

v 10 212 22 2|2 2

Fig. 3. Gadget for the construction of element genotypes in the proof of Theorem 4.

not a member of the corresponding triple. Finally, the set of non-trivial haplotypes that can be
shared by a set of genotypes for a single elemeahd the matching genotypes of a triplg
where~ € ¢; includes: (1) the haplotypes having a single 1-entry at either coltwn 4; or
6v + 45+ 1,; and (2) the haplotype that has two 1-entries at colufiing 45 and6v + 45 + L,.

We now claim thatd admits a phasing of siz&v+4u—w-+1 if and only if C has a matching
of sizew. Suppose that’ has a matching of size. We phase the genotypes of each triple in
the matching using th@; template shown in Figure 4. We phase the genotypes of elements in
each such triple using 4 additional haplotypes usinghdemplate shown in Figure 5. The
remaining sets of matching genotypes can be phased using 4 haplotypes each, according to the
P, template shown in Figure 4. The remaining sets of element genotypes can be phased using 5
haplotypes each, according to tfe template shown in Figure 5. Overall, the phasing includes
18w+5-3(v—w)+4(p—w)+1=15v+4u — w + 1 haplotypes.

Conversely, suppose that admits a phasing of cardinalitysr + 44 — w + 1. We let the

matching include those triples that share haplotypes with all their elements in this phasing. We



13

first show that any phasing of the set of genotypes of an elememhust contain at least 5
non-trivial haplotypes, 4 of which cannot be shared with any other genotype. Furthermore, if the
fifth haplotype can be shared then it must contain at least two 1-entries at poS§itiens; and

6v + 45 + L, for v € ¢;, implying the only genotypes it can be shared with are the genotypes

of the triplec; where~ € ¢;. We distinguish between three cases:

« If only one haplotype has a 1-entry at positidinthen the first three genotypes imply three
other haplotypes that must occur in the phasing. All four haplotypes cannot be shared with
element genotypes of other elements. A fifth haplotype, satisfying the constraints above, is
required to phase the seventh genotype.

. If a single haplotype has a 1l-entry at positidh+ 1 and a 0-entry at positioR: then
genotypes four through seven imply four additional haplotypes that must occur in the
phasing, none of which can be shared with element genotypes.

. If none of the above holds, then there are at least two haplotypes that have a 1l-entry at
position2i and two haplotypes that have a 0-entry at positomnd a 1-entry at position
21 + 1. All four haplotypes cannot be shared with element genotypes. A fifth haplotype,

satisfying the constraints above, is necessary for phasing genotypes four through seven.

We observe that the set of genotypes of a triple can share at most three haplotypes with the
genotype sets of its elements; if less than three haplotypes are shared, then four additional
haplotypes are needed for the phasing of this set of genotypes. We conclude that the constructed
matching must be of cardinality at leastas the trivial haplotype will be included in the optimal
solution, 5 non-trivial haplotypes are required for each set of element genotypes, 4 additional
non-trivial haplotypes are required for each set not sharing three haplotypes with its elements,

and 3 additional non-trivial haplotypes are required for each triple assigned to the matmhing.
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(1000) & (0100) (2200) (0000) @ (1100)
(1000) @ (0010) (2020) (0000) @ (1010)
(1000) @ (0001) | Py | (2002) | Ps | (0000) @ (1001)
(0000) & (0100) | <« | (0200) | = | (0000) @ (0100)
(0000) @ (0010) (0020) (0000) @ (0010)
(0000) @ (0001) (0002) (0000) @ (0001)

Fig. 4. Templates for phasing the set of genotypes corresponding to a triple in the proof of ThedPgrahdws a minimal
phasing with 4 non-trivial haplotype$s shows a phasing with 6 non-trivial haplotypes, three of which can be used can be

shared with element genotypes.

(22002222) (10000000) @ (01001111)

(22220022) (10000000) & (01110011)

(22222200) (10000000) @ (01111100)
Ps

(02002222) (00000000) & (01001111)
—

(02220022) (00000000) @ (01110011)

(02222200) (00000000) @ (01111100)

(02222222) (00110000) @ (01001111)

Fig. 5. A template for phasing the set of genotypes of an element in the proof of Theorem 4 using 5 non-trivial haplotypes.

Since the PH problem is NP-hard with respect to clique instances, our main focus in this
section is on identifying clique sub-instances for which PH is tractable. We start with several
observations on the constraints imposed by a clique instance on the sharing among its genotypes.

Lemma 5:1n a (x, k)-bounded clique instance every non-trivial haplotype is shared by at most

k genotypes.
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Proof. Consider a non-trivial haplotype. By definition, such a haplotype must have a 1-entry
in some position, and that is consistent with at mogfenotypes. [ |

Given a clique instance with genotypes, any solution to it must have at lelast @ ~
v/2n non-trivial haplotypes. To see this, consider a solution Witton-trivial haplotypes. Since
the [ haplotypes, together with the trivial haplotype, can form at nhes@ distinct genotypes,
we must haveé > L. We now show a lower bound on solutiongto k)-bounded clique instances,
for k < L.

Lemma 6:For k£ < L, any solution to gx, k)-bounded clique instance has cardinality at least
o+ L

Proof: Consider a solution with non-trivial haplotypes. Since all genotypes in the input
instance are distinct, the trivial haplotype participates in the phasing of at/mbshem in this
solution. By Lemma 5, the solution explains at mést [(k — 1)/2 genotypes, implying that
I > 2. The claim follows. n

Corollary 2: For (x, k)-bounded clique instances, the trivial solution yields an approximation
ratio of £,

We now present a polynomial algorithm for, 2)-bounded clique instances. Clearly, an upper
bound ofn + 1 is easy to achieve. By Lemma 6} + 1 is a lower bound on the cardinality of
any solution. We shall use the following auxiliary lemma.

Lemma 7:Let G be a(x,2)-bounded clique instance and lgtg’, ¢” be three genotypes of
G such thatg and ¢’ shareh and ¢ and ¢’ shareh, whereg = h @ h. Thenh has 1 in every
position in which bothy and ¢’ have 2.

Proof. Suppose to the contrary thathas 0 in some position in which bothand ¢’ have

2. Hence has 1 in that position and, thus, cannot be consistent gffitisince this would imply
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that the instance is ndt, 2)-bounded, a contradiction. [

Note that for a(x,2)-bounded clique instance, an inference path that starts from a given
genotype and a given haplotype is uniquely defined if we terminate its construction upon
encountering the trivial haplotype. An inference path that is constructed in this manner is said
to avoid the trivial haplotypeNow, for a(x, 2)-bounded clique instance and a haplotypeve
define aclique inference patlas follows. If 4 is consistent with a single genotypethen its
clique inference path is the inference path that startsatd avoids the trivial haplotype. If is
consistent with two genotypeg and g,, its clique inference path is created by: (1) computing
an inference path with respect to each of the two genotypes that avoids the trivial haplotype; (2)
merging these paths by adding an edge betwgeand ¢-; and (3) adding an edge between the
two other ends of the paths if both paths were terminated at the trivial haplotype. Note that the
resulting clique inference path may formcgcle This happens if both paths identify, or both
terminate at the trivial haplotype.

Lemma 8:1n a (%, 2)-bounded clique instance, any non-trivial genotype belongs to at most
one clique inference cycle.

Proof: By definition, a clique inference cycle contains at least three genotypeg. het
non-trivial genotype and suppose to the contrary thatcurs in two distinct cycles. Let,, g,
and g., g4 be its neighbors on each of the cycles, respectively. Then there are four haplotypes
R, By, he, hg Such thatg = h, @ hy = he ® ha, go = ha ® hay g = by ® h, go = he @ h, and
ga = hq @ hq.

Let s be a non-zero position in. Then w.l.o.g. we can assume thafs| # 0 and h.[s] # 0,
implying that g, and g. are non-zero at positior. Since the instance i, 2)-bounded, and

since by constructiog # g, andg # g., we must havey, = g.. We further claim that, = h..
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Suppose to the contrary thag # h.. Let i be some position at which the two haplotypes differ
and w.l.o.g.h,[i] = 1. Thenhyi] = 1, implying thatg, g, and g; have a 2-entry at position
However, g, # g4 Sinceg, = g., a contradiction. We conclude that both cycles correspond to
the clique inference path df,, proving the claim. [ |

Lemma 9: The most parsimonious solution for(&, 2)-bounded clique instance that contains
no clique inference cycles is of cardinality+ 1.

Proof: The existence of such a solution is immediate. Suppose to the contrary that there
exists a solution of smaller cardinality. Construct a gréplon the input genotypes with edges
connecting genotypes that share a haplotype in that solution. If the trivial haplotype is not used,
then every vertex in the graph has degree 2,Gsonust contain a clique inference cycle, a
contradiction. If the trivial haplotype is used, there must be a connected componéhinof
which the number of genotypes exceeds the number of non-trivial haplotypes that are used to
phase them. Hence, this connected component contains a clique inference cycle, a contradiction.

u
Theorem 10:Parsimony can be solved in polynomial time ofxa2)-bounded clique instance.

Proof: First, observe that in &, 2)-bounded clique instance, the genotypes comprising a
clique inference cycle of length can be optimally phased usirighaplotypes. The algorithm
finds all clique inference cycles in the Clark-consistency graph; phases them optimally; and then
phases the remaining genotypes using the trivial haplotype and one additional haplotype for each
remaining genotype. The correctness of the algorithm follows from Lemmas 8 and 9.

The identification of clique inference cycles relies on Lemma 7, and is done by iterating the
following steps until all genotype pairs that share some haplotype have been processed:

(a) Choose two genotypes, g» that share some haplotype.
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(b) Let h be the haplotype with 1 in positionif and only if g;[i] = go[i] = 2.
(c) Construct the clique inference path /af
(d) If this is a cycle, add the haplotypes found to the optimal solution and remove the genotypes

found from consideration. [ |

V. BOUNDED TREEWIDTH GRAPHS

A graph G is said to havereewidth & (cf. [2]) if G admits a covel X}, of its vertices
such that: (a)X;| < k£ + 1 for all 7; (b) for every edggg, ¢') of G, someX; contains botty
and¢’; and (c) the sets(; can be assigned to nodésf a rooted binary tre@ = (I, F') such
that if j is on a path betweenandk in T' then X; N X; C X.

In this section we consider the case when the input instance gives rise to a Clark-consistency
graph with bounded treewidth. We shall present a polynomial dynamic-programming algorithm
for such graphs on enumerable input instances. We assume that the Clark-consistency graph is
connected, as otherwise we can operate on each connected component independently.

Theorem 11:There is a polynomial algorithm for PH on enumerable instances when the
Clark-consistency graph has bounded treewidth.

Proof: Since the input instance is enumerable, there’#re) haplotypes that are consistent
with any genotype in the input instance (for some constantet G be a Clark-consistency graph
of bounded treewidth for the input instance. ThGsadmits a covef X}, of its vertices such
that a tre€l’ on the setsX; has the properties described above. We give a dynamic programming
algorithm for PH onG5. Let r be the root off". For a nodey, letv; andv, be its two children, and
let X, denote the set of genotypes assigned to this node. We say that a multi-set of haplotypes
H resolvesa nodev if H = {h4,...,hx, } and genotype in X, is consistent with,.

Denote the optimum solution for the sub-instance induced by the genotypes in the subtree
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rooted atv by D(v). Denote byD (v, H) the optimum solution to this sub-instance for a multi-set
H that resolves.
Clearly, D(r) = ming D(r, H) where H ranges over alD(n°*+1)) multi-sets of haplotypes of

cardinality| X.| that resolve-. The following recursive formula can be used to compte, H):
D(r,H) = I;Img {D(r1, Hy) + D(ra, Hy) + A(r, 71,79, H, Hy, Ho) }
1,412

whereH;,i = 1,2 resolvesr; and agrees withi/ on the haplotypes explaining each genotype in
X, NX,,. A(r,r, 72, H, Hy, Hy) is a correction factor: let be the number of haplotypes that
are used in phasing,, N X,, according toH; (or H,). Lety be the number of haplotypes that
are used to phas¥, \ (X,, U X,,) according toH. ThenA(r,r, 7, H, Hy, Hy) =y — x.
For a leafv at the base of the recursiol|v, H) is defined as the number of distinct haplotypes
in the set composed of the haplotypesAnand their mates (with respect t6,). Thus, D(r)
can be computed using a bottom-up traversal of the iree polynomial time. [ |
Lemma 12:Let G be the Clark-consistency graph of an enumerable input instance.kAny
edges whose removal makésof bounded treewidth can be used to approximate parsimony to
within an additive term of.

Proof: Suppose we are given a set bfedges, whose removal makés of bounded
treewidth. By removing those edges we can apply the above dynamic programming algorithm
to the resulting graph. Since each additional pair of genotypes that share a haplotype can reduce
the number of required haplotypes by at most 1, we obtain a solution with at apost k

haplotypes, wherept is the size of an optimum solution. [ |

VI. BIPARTITE GRAPHS

In this section we study the parsimony problem when the Clark-consistency graph is bipartite.

We note that this implies that each haplotype can be shared by at most two genotypes. Hence,



20

the lower bound on the cardinality of any solution is the number of genotyp@é¢e prove that
parsimony haplotyping on bipartite graphs is hard to approximate even in the case that the longest
inference path is of length 2. We complement this result by giving a polynomial algorithm for
the case that the longest inference path is of length 1, and an approximation algorithm for paths
of length greater than 1.

Theorem 13:Parsimony haplotyping is NP-hard when the Clark-consistency graph is bipartite
and the longest inference path is of length 2.

Proof: We reduce from 3DM3. Consider a 3DM3 instance with disjoint sEt&, 7
containingr elements each, and a sét = {c,...,c,—1} of p triples in X xY x Z. We
construct a PH instance withv + 31 genotypes an@v + 51 SNPs.

For each element; € X, y; € Y, or z; € Z we construct one genotype, whose non-zero
entries are (see Figure 6):

o x;[t] = 2; z;[3v +i] = 1; x;[6v + 5j] = 2 for everyj such thatz; € ¢;.

o yilv+1] =2; yildv +1] =1, y;[6v + 55 + 1] = 2 for every j such thaty; € c;.

o zi[2v 4] = 2; z[bv +1i] = 1; z[6v + 55 + 2] = 2 for every j such thatz; € ¢;.

For each triplec; € C' we create 3 genotypes, whose non-zero entries are:

o cf[3v+i] = 2 for everyi such thaty; € ¢;; cf[6v+55] = 1; ¢f [6v+55+2] = cf[6v+5j+3] =

2.

o cf[4v + 1] = 2 for everyi such thaty; € c;; cf[5v +i] = 2 for everyi such thatz; € c;;

cilbv 455 +1] = 1; ¢j[6v + 55 + 2] = cf[6v + 55 + 4] = 2.

o ci[5v+i] = 2 for everyi such that; € c;; ¢;[6v+5j+2] = 1; c;[6r+5j] = c5[6v+5j+1] =

2.
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z; 12 0 0]1 0 0}2 0000

2z (0 0 2]0 0 1]0 0 2 00

Fig. 6. Gadget for the reduction in the proof of Theorem 13.

The graph is bipartite as the genotypés;,y; can be assigned to one side of the bipartition,
and the genotypes, ¢f, ¢ can be assigned to the other side. The only possibilities for haplotype
sharing between genotypes are: (dwith ¢ for v € {z,y, z}; and (2)¢* or ¢V with ¢*. By
construction of column8r +55 and6v +5; + 1, if ¢; shares a haplotype with somg it cannot
share its complement wit or cf. Thus, the longest haplotype inference path has leagth

Let A be the resulting genotype matrix. We claim tklaadmits a phasing of siz& + 4y —w

if and only if C' has a matching of size. The proof is similar to that in Theorem 1 using the

phasing templates given in Figure 7. [ |
(00010010010) @ (00000010100) (00020010220) (00010010000) @& (00000010110)
P4 Pe
(00000101100) @ (00001001001) (00002201202) (00001001000) & (00000101101)
— =
(00000101100) @  (00000010100) (00000222100) (00000100100) &  (00000011100)

Fig. 7. The three matching genotypes corresponding to a triple in the proof of Theorem 13 and alternative phasings of these
genotypesPs show a minimal phasing with 4 haplotypes, none of which can be shared with the element gerBtyplesws

a phasing using 6 haplotypes, 3 of which can be shared with the element genotypes.

Corollary 3: Parsimony haplotyping is APX-hard when the Clark-consistency graph is bipar-

tite and the longest inference path is of length 2.
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We note that since a haplotype can be shared by at most two genotypes, any phasing will
give a 2-approximation to PH. The following two lemmas improve on this trivial ratio.

When the longest inference path is of length 1, one can reduce PH to a maximum matching
problem, giving rise to the following result:

Observation 1:If the length of the longest inference path is 1 then parsimony haplotyping
can be optimally solved in polynomial time.

For general bipartite graphs we can use this fact to devise a 1.5-approximation algorithm: (1)
Find a maximum matching in the Clark-consistency graph; (2) phase each genotype pair in the
matching using a shared haplotype; and (3) arbitrarily phase the remaining genotypes.

Lemma 14:The above algorithm gives a 1.5-approximation for PH on instances that induce
a bipartite Clark-consistency graph.

Proof: Consider an instance of PH with a bipartite Clark-consistency g€aphbet m be
the size of a maximum matching @& and letn be the number of genotypes. By definition, the
solution returned by the approximation algorithm will have size— m. Let T' be an optimum
solution to the PH instance and |ét be the subgraph off which contains an edge between
two genotypes if and only if they share a haplotype in the solution. Denote thg number

of edges inH, i.e., e is the number of genotype pairs that share a haplotype in this solution.

Then|T'| = 2n — e, and the approximation guarantee%tg_—? < 227?_‘27; < g The first inequality

follows from the fact that each vertex has degree at most 2/ jrand the second inequality

follows from the fact thakm < n, and that the worst bound is obtained for= m /2. u

VIlI. CONCLUSIONS

In this paper we have studied the complexity and approximability of parsimony haplotyping.

We have shown that the problem is APX-hard even in very restricted cases. On the positive side,
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we have introduced a characterization of input instances by the Clark-consistency graphs they
induce, and identified classes of these graphs with specific structure of haplotype sharing, which
admit polynomial or constant-approximation algorithms.

Common methods for solving parsimony haplotyping include integer programming [12], [3],
which is often solved using a branch and bound approach, and direct branch and bound meth-
ods [27]. Our results may be of use when incorporated within these branch and bound procedures,
by terminating when the examined sub-instance has the characteristics of one of the problems
studied here. The sub-instance can then be efficiently solved using the algorithms we have

described.
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