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Islands of Tractability for Parsimony

Haplotyping
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Abstract

We study the parsimony approach to haplotype inference, which calls for finding a set of haplotypes

of minimum cardinality that explains an input set of genotypes. We prove that the problem is APX-hard

even in very restricted cases. On the positive side, we identify islands of tractability for the problem,

by focusing on instances with specific structure of haplotype sharing among the input genotypes. We

exploit the structure of those instance to give polynomial and constant-approximation algorithms to the

problem. We also show that the general parsimony haplotyping problem is fixed parameter tractable.
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I. I NTRODUCTION

Single nucleotide polymorphisms (SNPs) are differences in a single base, across the popu-

lation, within an otherwise conserved genomic sequence. SNPs are the most common form of

variation of DNA sequences among individuals. Especially when occurring in coding or otherwise

functional regions, variations in SNP content are linked to medical condition or may affect drug

response.

A SNP commonly has two variants, oralleles, in the population, corresponding to two of the

four genomic lettersA, C, G, andT . The sequence of alleles in contiguous SNP positions along a

chromosomal region is called ahaplotype. For diploid organisms, thegenotypespecifies for every

SNP position the particular alleles that are present at this site in the two chromosomes. Genotype

data contains information only on the combination of alleles at a given site, and does not reveal

the association of each allele with one of the two chromosomes–itsphase. Current technologies,

suitable for large-scale polymorphism screening only yield the genotype information at each

SNP site. The actual haplotypes in the typed region can be obtained at a considerably higher

cost [23]. Due to the importance of haplotype information for inferring population history and

for disease association, it is desirable to develop efficient methods for inferring haplotypes from

genotype information.

Numerous approaches have been suggested in the literature to resolve haplotypes from geno-

type data. These methods include the seminal approach of Clark [4] and related parsimony

approaches [9], [10], [12]; maximum likelihood methods [5], [6], [16], [21]; Bayesian methods

such as PHASE [26], HAPLOTYPER [22] and HaploBlock [8]; and perfect-phylogeny-based
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approaches [11], [1], [14]. The reader is referred to [13] for a survey on different formulations

of the haplotyping problem.

Here we focus on theparsimony haplotyping (PH)problem, where the input is a set ofn

genotypes and the goal is to find a minimum set of haplotypes that explains them (a formal

definition of PH is deferred to Section II). Parsimony is a natural criterion for choosing a

solution in many domains. This is particularly true for haplotyping, since the number of distinct

haplotypes observed in a population is much smaller than the number of possible haplotypes, due

to population bottleneck effects and genetic drift. For example, Patil et al. report that within short

genomic regions, typically, some 70-90% of the haplotypes belong to very few (2-5) common

haplotypes [23].

There has been extensive research on the parsimony haplotyping problem. Hubbell has shown

that the problem is NP-complete [18]. Lin et al. have investigated a related problem and showed

that it is NP-complete as well [20]. A practical integer programming approach for it was devised

by Gusfield [12]. Recently, Lancia et al. [19] have shown that the problem is APX-hard and have

given a 2k−1-approximation algorithm for the problem, for data sets in which each genotype

has at mostk ambiguous positions. Huang et al. [17] have given anO(log n)-approximation

algorithm for the problem, for data sets in which there is a polynomial number of haplotypes to

be considered.

In this paper we study the complexity and approximability of parsimony haplotyping and its

restrictions. We characterize instances of the problem by the number of ambiguous sites they

contain and the structure of aClark-consistency graphwhose vertices correspond to genotypes

and whose edges represent sharing of haplotypes. On the negative side, we show that parsimony

haplotyping is APX-hard even when the input instances have small numbers of ambiguous sites
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per genotype or SNP; when the corresponding Clark-consistency graph is a clique; or when the

Clark-consistency graph is bipartite. On the positive side, we show that the problem is fixed

parameter tractable, and give polynomial algorithms and approximation algorithms for some of

its restrictions. Specifically, we give a polynomial algorithm for PH on cliques when each SNP

has at most two genotypes in which it is ambiguous. We also give a polynomial algorithm for PH

when the Clark-consistency graph has bounded treewidth. Finally, we give a 1.5-approximation

algorithm for PH when the input instance induces a bipartite Clark-consistency graph.

The paper is organized as follows: Section II provides background on the problem. The

complexity of parsimony haplotyping is analyzed in Section III. Restrictions of the problem

are studied in Sections IV-VI.

II. PRELIMINARIES

A haplotypeis a row vector with binary entries. Each position in the vector indicates the state

(0 or 1) of a certain SNP in this haplotype. For a haplotypeh, let h[i] denote theith position

of h. A genotypeis a row vector with entries in{0, 1, 2}, each corresponding to a SNP site.

A genotype matrixis a matrix whose rows are genotypes. We denote the number of genotypes

by n. Two haplotypesh1 and h2 explain a genotypeg, denoted byh1 ⊕ h2 = g, if for each

position i the following holds:g[i] ∈ {0, 1} implies h1[i] = h2[i] = g[i]; and g[i] = 2 implies

h1[i] 6= h2[i]. If h[i] = g[i] wheneverg[i] ∈ {0, 1} thenh is said to beconsistentwith g.

A haplotype that is consistent with two genotypes is said to besharedby them. Given a set

of genotypes, the graph containing the genotypes as nodes and an edge between two genotypes

if and only if they share a haplotype is called theClark-consistency graph. This definition is

inspired by Clark’s rule for haplotype inference [4] as is explained below. A(k, l)-bounded

instanceis an input genotype matrix with at mostk 2-entries per row and at mostl 2-entries
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per column, where an asterisk instead ofk or l indicates no constraint. Anenumerableinstance

is an input genotype matrix with a polynomial number of haplotypes that are consistent with

any of its genotypes or, equivalently, an (O(log n),*)-bounded instance.

The parsimony haplotyping problem is formally defined as follows:

Problem 1 (Parsimony Haplotyping (PH)):Given a set of genotypes, find a minimum set of

haplotypesH such that each genotype can be explained by two haplotypes fromH.

A related problem concerns identifying haplotypes that are consistent with the input set of

genotypes:

Problem 2 (Minimum Haplotype Consistency (MHC)):Given a set of genotypes, find a min-

imum set of haplotypesH such that each genotype is consistent with some element ofH.

Inference paths in the Clark-consistency graph are defined as follows: For a haplotypeh and

a genotypeg that is consistent with it, aninference pathis a path in the Clark-consistency graph

that starts atg and is created as follows: (1) letg = h ⊕ h̄; (2) move to a genotypeg′ that is

consistent with̄h if such exists and was not visited already; (3) setg = g′, h = h̄ and go to step

(1). The path terminates when it reaches a haplotypeh whose complement is consistent with

genotypes in the path only. Itslength is defined to be its number of edges.

III. C OMPLEXITY OF PARSIMONY HAPLOTYPING

The general parsimony haplotyping problem is known to be NP-complete [18] and APX-

hard [19], and, hence, unlikely to admit a polynomial time approximation scheme. In fact, the

construction in the hardness proof of Lancia et al. [19] shows that the problem is APX-hard

already for(3, ∗)-bounded instances. In the following we strengthen their result and prove that

parsimony haplotyping is APX-hard even for(4, 3)-bounded instances.

Theorem 1:Parsimony haplotyping is NP-hard for(4, 3)-bounded instances.
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Proof: We give a reduction from 3-Dimensional Matching with each element occurring

in at most 3 triples (3DM3) [7]: given disjoint setsX,Y, Z containingν elements each, and a

set C = {c0, . . . , cµ−1} of µ triples in X × Y × Z such that each element occurs in at most

three triples ofC, find a maximum cardinality setC ′ ⊆ C of disjoint triples (a 3-dimensional

matching).

We build a genotype matrix with3ν + 3µ rows and6ν + 4µ columns. The first3ν rows

are calledelement genotypesand represent the elements of the 3DM3 instance. The other3µ

rows are calledmatching genotypesand represent the triples. The first3ν columns are used to

ensure that for each element genotype, at most one of its haplotypes can be shared. The next3ν

columns ensure that element genotypes do not share haplotypes with each other; they can only

share haplotypes with genotypes corresponding to triples they occur in. The next4µ columns

represent the triples and restrict the sharing of haplotypes among the matching genotypes, as

described below.

The construction of the genotype matrix is based on the gadget shown in Figure 1. For each

elementxi ∈ X, yi ∈ Y , or zi ∈ Z we construct one genotype. In the following we specify for

each genotype its non-zero entries only.

• xi[i] = 2; xi[3ν + i] = 1; xi[6ν + 4j] = 2 for all j such thatxi ∈ cj.

• yi[ν + i] = 2; yi[4ν + i] = 1; yi[6ν + 4j] = 2 for all j such thatyi ∈ cj.

• zi[2ν + i] = 2; zi[5ν + i] = 1; zi[6ν + 4j] = 2 for all j such thatzi ∈ cj.

For each triplecj ∈ C we create 3 genotypes, whose non-zero entries are:

• cx
j [3ν + i] = 2 for i such thatxi ∈ cj; cx

j [6ν + 4j] = 1; cx
j [6ν + 4j + 1] = 2.

• cy
j [4ν + i] = 2 for i such thatyi ∈ cj; cy

j [6ν + 4j] = 1; cy
j [6ν + 4j + 2] = 2.

• cz
j [5ν + i] = 2 for i such thatzi ∈ cj; cz

j [6ν + 4j] = 1; cz
j [6ν + 4j + 3] = 2.
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xi 2 0 0 1 0 0 2 0 0 0

yi 0 2 0 0 1 0 2 0 0 0

zi 0 0 2 0 0 1 2 0 0 0

cx 0 0 0 2 0 0 1 2 0 0

cy 0 0 0 0 2 0 1 0 2 0

cz 0 0 0 0 0 2 1 0 0 2

Fig. 1. Gadget for the reduction in Theorem 1.

The resulting genotype matrixA is (4, 3)-bounded. Indeed, each element genotype contains

exactly one 2-entry in one of the first3ν columns and at most three other 2-entries representing

the triples in which the element occurs. Each matching genotype has exactly two 2-entries. For

the bound on the columns, observe that the first3ν columns contain one 2-entry; the next3ν

columns have at most three 2-entries, since their corresponding elements occur in at most three

triples. The last4µ columns contain at most three 2-entries each.

We now claim thatA has a parsimony solution of cardinality6ν + 4µ − ω if and only if

C has a matching of sizeω. First, observe that every set of three matching genotypes can be

phased using four haplotypes, none of which can be shared with the element genotypes, or using

6 haplotypes, 3 of which (left column) can be shared with element genotypes, as depicted in

Figure 2.

For the ’if’ part, suppose thatC has a matching of sizeω. For eachc ∈ C we phase the

corresponding matching genotypes using the templateP6, as shown in Figure 2. Three of those

six haplotypes can be used to phase the corresponding element genotypes, where each element

genotype requires one additional haplotype to complete its phasing. Overall, the phasing uses9ω
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
(0001001100) ⊕ (0000001000)

(0000101010) ⊕ (0000001000)

(0000011001) ⊕ (0000001000)


P4

⇐=


(0002001200)

(0000201020)

(0000021002)


P6

=⇒


(0001001000) ⊕ (0000001100)

(0000101000) ⊕ (0000001010)

(0000011000) ⊕ (0000001001)


Fig. 2. The three matching genotypes corresponding to a triple and alternative phasings of these genotypes.P4 show a minimal

phasing with 4 haplotypes, none of which can be shared with the element genotypes.P6 shows a phasing using 6 haplotypes,

3 of which can be shared with the element genotypes.

haplotypes for this set of genotypes. The remaining element genotypes can be phased arbitrarily

using two haplotypes each. The remaining matching genotypes can be phased using theP4

template by 4 haplotypes each, as shown in Figure 2. In total, the phasing includes9ω + 2 ·

3(ν − ω) + 4(µ− ω) = 6ν + 4µ− ω haplotypes.

Conversely, given a phasing ofA using6ν +4µ−ω haplotypes, we can construct a matching

of size ω, by letting our matching be those triples whose corresponding matching genotypes

share haplotypes with all three of their element genotypes. By construction, element genotypes

cannot share haplotypes among themselves, so their phasing requires6ν haplotypes. Consider

any triple t of matching genotypes. These genotypes can only share haplotypes with each other

or with the corresponding element genotypes. Furthermore,t can share at most 3 haplotypes

with its element genotypes. Ift shares exactly 3 haplotypes with its element genotypes (in the

given phasing) then, by construction, it is phased using 6 haplotypes in total. Ift shares less

than 3 haplotypes with its element genotypes, it must be phased using 4 additional haplotypes

that are not shared with the element genotypes. Hence, the resulting matching has size at least

ω.

Corollary 1: Parsimony haplotyping is APX-hard for(4, 3)-bounded instances.

Proof: Petrank [24] has shown that it is NP-hard to determine whether a maximum matching

of a 3DM3 instance is perfect or misses a constant fractionε of the elements. In the first case,
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our genotype instance admits a solution of cardinality5ν + 4µ; in the second case, it admits a

solution of cardinality at most5ν + 4µ + εν. The claim follows.

We now show that the related problem of ’covering’ the input genotypes is hard as well.

Theorem 2:MHC is NP-complete.

Proof: The problem is clearly in NP. We reduce from CLIQUE COVER [7]. Given an

instance of CLIQUE COVER, consisting of a graphG = ({1, . . . , n}, E) and an integerk, we

build ann× n genotype matrix as follows: For each vertexi we have a corresponding rowri.

We setri
i = 1. For all verticesj that are adjacent toi we setri

j = 2. All other entries ofri are

set to 0. It is easy to see that a haplotype is consistent with a set of genotypes (rows) if and only

if the corresponding vertices form a clique inG. Hence, there is a 1-1 correspondence between

solutions to CLIQUE COVER and solutions to the MHC instance.

We note that a similar reduction from CLIQUE shows that even the problem of identifying a

haplotype that is consistent with a maximum number of genotypes is NP-hard. Moreover, these

reductions also show that both problems are NP-hard to approximate to within a factor ofn1−ε,

unless NP=ZPP [15].

On the positive side, we now show that PH is fixed parameter tractable with respect to the

cardinality of the solution set of haplotypes.

Theorem 3:Parsimony haplotyping is fixed parameter tractable with respect to to the number

of haplotypes in the solution set.

Proof: Fixing the number of allowed haplotypes tok implies that the maximum number

of distinct genotypes possible isk(k+1)
2

. Let m be the length of the input genotypes. Denote the

unknown haplotypes in an optimal solution byh1, . . . , hk. For each genotype, we can enumerate

the pair of indices of the solution haplotypes that explain it. The problem is then reduced to
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solving m sets of linear equations over GF(2). Each set of equations involves at most two

variables per equation and can be viewed as a 2-SAT instance. Hence, resolving the haplotypes

given their assignment to genotypes can be done inO(mk2) time, and the overall complexity

of the algorithm isO(mkk2+k).

The rest of the paper concerns identifying islands of tractability for parsimony haplotyping. We

show positive results for instances in which the Clark-consistency graph is a(∗, 2)-bounded clique

or has bounded treewidth, as well as approximation algorithms for several variants, including

instances for which the Clark-consistency graph is bipartite.

IV. PARSIMONY ON CLIQUES

In this section we study complete Clark-consistency graphs (cliques), corresponding to in-

stances in which every two genotypes share a haplotype. We call such an instance aclique

instance. For a clique instance, every column in the genotype matrix can contain at most two

values (out of{0, 1, 2}), one of which is 2. W.l.o.g., we shall consider matrices with only 0-s

and 2-s. In particular, the all-zero haplotype is shared by all the genotypes and is calledtrivial .

When the input instance contains the all-0 genotype, any solution to it must contain the trivial

haplotype. For ease of presentation, we assume in the following that the input instance does not

contain the all-0 genotype.

Theorem 4:Parsimony haplotyping is NP-hard on cliques.

Proof: We give a reduction from 3DM3, similar to that in the proof of Theorem 1. The

input to the 3DM3 instance includes disjoint setsX, Y, Z containingν elements each, and a set

C = {c0, . . . , cµ−1} of µ triples in X × Y × Z. Let ν1, ν2 denote the number of elements that

only occur in1 or 2 triples, respectively. We build a genotype matrixA with 21ν +6µ rows and

6ν +4µ+8ν1 +4ν2 columns. The first21ν rows are calledelement genotypesand represent the
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elements of the 3DM3 instance. The other6µ rows are calledmatching genotypesand represent

the triples.

To ensure that every element occurs in exactly three sets, we start by constructing2ν1 + ν2

singleton sets. Each element that occurs in two triples is assigned to one singleton set, and each

element that occurs in one triple is assigned to two singleton sets. We label the singleton sets

cµ+1 throughcµ+2ν1+ν2.

For theith elementγ ∈ X ∪Y ∪Z, occurring in sets (triples or singleton sets)cj1 , cj2 andcj3,

we construct seven element genotypesγ1, . . . , γ7 (see Figure 3). Letlγ = 1 if γ ∈ X, lγ = 2 if

γ ∈ Y , and lγ = 3 if γ ∈ Z. The 2-entries ofγk, 1 ≤ k ≤ 7, are as follows:

• γk[2i] = 2 if k ≤ 3; γk[2i + 1] = 2.

• γk[6ν + 4j1] = γk[6ν + 4j1 + lγ] = 2 if k ∈ {2, 3, 5, 6, 7}.

• γk[6ν + 4j2] = γk[6ν + 4j2 + lγ] = 2 if k ∈ {1, 3, 4, 6, 7}.

• γk[6ν + 4j3] = γk[6ν + 4j3 + lγ] = 2 if k ∈ {1, 2, 4, 5, 7}.

For each triplecj ∈ C we create six matching genotypesc1
j , . . . , c

6
j , whose 2-entries are:

• ck
j [6ν + 4j] = 2 if k ≤ 3.

• ck
j [6ν + 4j + r + 1] = 2, wherer = k − 1 (mod 3).

Note that the construction of the matching genotypes implies that the trivial haplotype and each

of the haplotypes that have a single 1-entry in one of the columns6ν +4j + r, r ∈ {1, 2, 3}, j ∈

{0, . . . , µ− 1} will necessarily be included in any solution to the PH instance.

The construction ensures that if genotypes of different elements share a non-trivial haplotype,

then the elements are members of the same triplecj and the haplotype has a single 1-entry at

column6ν +4j. Also, only the trivial haplotype can be shared between matching genotypes that

are not part of the same triple, or between a matching genotype and an element genotype that is
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γ1 2 2 0 0 2 2 2 2

γ2 2 2 2 2 0 0 2 2

γ3 2 2 2 2 2 2 0 0

γ4 0 2 0 0 2 2 2 2

γ5 0 2 2 2 0 0 2 2

γ6 0 2 2 2 2 2 0 0

γ7 0 2 2 2 2 2 2 2

Fig. 3. Gadget for the construction of element genotypes in the proof of Theorem 4.

not a member of the corresponding triple. Finally, the set of non-trivial haplotypes that can be

shared by a set of genotypes for a single elementγ and the matching genotypes of a triplecj,

whereγ ∈ cj includes: (1) the haplotypes having a single 1-entry at either column6ν + 4j or

6ν + 4j + lγ; and (2) the haplotype that has two 1-entries at columns6ν + 4j and6ν + 4j + lγ.

We now claim thatA admits a phasing of size15ν+4µ−ω+1 if and only if C has a matching

of sizeω. Suppose thatC has a matching of sizeω. We phase the genotypes of each triple in

the matching using theP6 template shown in Figure 4. We phase the genotypes of elements in

each such triple using 4 additional haplotypes using theP5 template shown in Figure 5. The

remaining sets of matching genotypes can be phased using 4 haplotypes each, according to the

P4 template shown in Figure 4. The remaining sets of element genotypes can be phased using 5

haplotypes each, according to theP5 template shown in Figure 5. Overall, the phasing includes

18ω + 5 · 3(ν − ω) + 4(µ− ω) + 1 = 15ν + 4µ− ω + 1 haplotypes.

Conversely, suppose thatA admits a phasing of cardinality15ν + 4µ − ω + 1. We let the

matching include those triples that share haplotypes with all their elements in this phasing. We
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first show that any phasing of the set of genotypes of an element,γ, must contain at least 5

non-trivial haplotypes, 4 of which cannot be shared with any other genotype. Furthermore, if the

fifth haplotype can be shared then it must contain at least two 1-entries at positions6ν +4j and

6ν + 4j + lγ, for γ ∈ cj, implying the only genotypes it can be shared with are the genotypes

of the triplecj whereγ ∈ cj. We distinguish between three cases:

• If only one haplotype has a 1-entry at position2i then the first three genotypes imply three

other haplotypes that must occur in the phasing. All four haplotypes cannot be shared with

element genotypes of other elements. A fifth haplotype, satisfying the constraints above, is

required to phase the seventh genotype.

• If a single haplotype has a 1-entry at position2i + 1 and a 0-entry at position2i then

genotypes four through seven imply four additional haplotypes that must occur in the

phasing, none of which can be shared with element genotypes.

• If none of the above holds, then there are at least two haplotypes that have a 1-entry at

position2i and two haplotypes that have a 0-entry at position2i and a 1-entry at position

2i + 1. All four haplotypes cannot be shared with element genotypes. A fifth haplotype,

satisfying the constraints above, is necessary for phasing genotypes four through seven.

We observe that the set of genotypes of a triple can share at most three haplotypes with the

genotype sets of its elements; if less than three haplotypes are shared, then four additional

haplotypes are needed for the phasing of this set of genotypes. We conclude that the constructed

matching must be of cardinality at leastω, as the trivial haplotype will be included in the optimal

solution, 5 non-trivial haplotypes are required for each set of element genotypes, 4 additional

non-trivial haplotypes are required for each set not sharing three haplotypes with its elements,

and 3 additional non-trivial haplotypes are required for each triple assigned to the matching.
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

(1000) ⊕ (0100)

(1000) ⊕ (0010)

(1000) ⊕ (0001)

(0000) ⊕ (0100)

(0000) ⊕ (0010)

(0000) ⊕ (0001)



P4

⇐=



(2200)

(2020)

(2002)

(0200)

(0020)

(0002)



P6

=⇒



(0000) ⊕ (1100)

(0000) ⊕ (1010)

(0000) ⊕ (1001)

(0000) ⊕ (0100)

(0000) ⊕ (0010)

(0000) ⊕ (0001)


Fig. 4. Templates for phasing the set of genotypes corresponding to a triple in the proof of Theorem 4.P4 shows a minimal

phasing with 4 non-trivial haplotypes.P6 shows a phasing with 6 non-trivial haplotypes, three of which can be used can be

shared with element genotypes.



(22002222)

(22220022)

(22222200)

(02002222)

(02220022)

(02222200)

(02222222)



P5

=⇒



(10000000) ⊕ (01001111)

(10000000) ⊕ (01110011)

(10000000) ⊕ (01111100)

(00000000) ⊕ (01001111)

(00000000) ⊕ (01110011)

(00000000) ⊕ (01111100)

(00110000) ⊕ (01001111)


Fig. 5. A template for phasing the set of genotypes of an element in the proof of Theorem 4 using 5 non-trivial haplotypes.

Since the PH problem is NP-hard with respect to clique instances, our main focus in this

section is on identifying clique sub-instances for which PH is tractable. We start with several

observations on the constraints imposed by a clique instance on the sharing among its genotypes.

Lemma 5: In a (∗, k)-bounded clique instance every non-trivial haplotype is shared by at most

k genotypes.
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Proof: Consider a non-trivial haplotype. By definition, such a haplotype must have a 1-entry

in some position, and that is consistent with at mostk genotypes.

Given a clique instance withn genotypes, any solution to it must have at leastL ≡
√

8n+9−3
2

∼
√

2n non-trivial haplotypes. To see this, consider a solution withl non-trivial haplotypes. Since

the l haplotypes, together with the trivial haplotype, can form at mostl+
(

l
2

)
distinct genotypes,

we must havel ≥ L. We now show a lower bound on solutions to(∗, k)-bounded clique instances,

for k ≤ L.

Lemma 6:For k ≤ L, any solution to a(∗, k)-bounded clique instance has cardinality at least

2n
k+1

+ 1.

Proof: Consider a solution withl non-trivial haplotypes. Since alln genotypes in the input

instance are distinct, the trivial haplotype participates in the phasing of at mostl of them in this

solution. By Lemma 5, the solution explains at mostl + l(k − 1)/2 genotypes, implying that

l ≥ 2n
k+1

. The claim follows.

Corollary 2: For (∗, k)-bounded clique instances, the trivial solution yields an approximation

ratio of k+1
2

.

We now present a polynomial algorithm for(∗, 2)-bounded clique instances. Clearly, an upper

bound ofn + 1 is easy to achieve. By Lemma 6,2n
3

+ 1 is a lower bound on the cardinality of

any solution. We shall use the following auxiliary lemma.

Lemma 7:Let G be a(∗, 2)-bounded clique instance and letg, g′, g′′ be three genotypes of

G such thatg and g′ shareh and g and g′′ shareh̄, whereg = h ⊕ h̄. Thenh has 1 in every

position in which bothg andg′ have 2.

Proof: Suppose to the contrary thath has 0 in some position in which bothg andg′ have

2. Hence,̄h has 1 in that position and, thus, cannot be consistent withg′′, since this would imply
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that the instance is not(∗, 2)-bounded, a contradiction.

Note that for a(∗, 2)-bounded clique instance, an inference path that starts from a given

genotype and a given haplotype is uniquely defined if we terminate its construction upon

encountering the trivial haplotype. An inference path that is constructed in this manner is said

to avoid the trivial haplotype. Now, for a(∗, 2)-bounded clique instance and a haplotypeh, we

define aclique inference pathas follows. If h is consistent with a single genotypeg then its

clique inference path is the inference path that starts atg and avoids the trivial haplotype. Ifh is

consistent with two genotypesg1 andg2, its clique inference path is created by: (1) computing

an inference path with respect to each of the two genotypes that avoids the trivial haplotype; (2)

merging these paths by adding an edge betweeng1 andg2; and (3) adding an edge between the

two other ends of the paths if both paths were terminated at the trivial haplotype. Note that the

resulting clique inference path may form acycle. This happens if both paths identify, or both

terminate at the trivial haplotype.

Lemma 8: In a (∗, 2)-bounded clique instance, any non-trivial genotype belongs to at most

one clique inference cycle.

Proof: By definition, a clique inference cycle contains at least three genotypes. Letg be a

non-trivial genotype and suppose to the contrary thatg occurs in two distinct cycles. Letga, gb

and gc, gd be its neighbors on each of the cycles, respectively. Then there are four haplotypes

ha, hb, hc, hd such thatg = ha ⊕ hb = hc ⊕ hd, ga = ha ⊕ h̄a, gb = hb ⊕ h̄b, gc = hc ⊕ h̄c and

gd = hd ⊕ h̄d.

Let s be a non-zero position ing. Then w.l.o.g. we can assume thatha[s] 6= 0 andhc[s] 6= 0,

implying that ga and gc are non-zero at positions. Since the instance is(∗, 2)-bounded, and

since by constructiong 6= ga andg 6= gc, we must havega = gc. We further claim thatha = hc.



17

Suppose to the contrary thatha 6= hc. Let i be some position at which the two haplotypes differ

and w.l.o.g.ha[i] = 1. Thenhd[i] = 1, implying thatg, ga and gd have a 2-entry at positioni.

However,ga 6= gd sincega = gc, a contradiction. We conclude that both cycles correspond to

the clique inference path ofha, proving the claim.

Lemma 9:The most parsimonious solution for a(∗, 2)-bounded clique instance that contains

no clique inference cycles is of cardinalityn + 1.

Proof: The existence of such a solution is immediate. Suppose to the contrary that there

exists a solution of smaller cardinality. Construct a graphG on the input genotypes with edges

connecting genotypes that share a haplotype in that solution. If the trivial haplotype is not used,

then every vertex in the graph has degree 2, soG must contain a clique inference cycle, a

contradiction. If the trivial haplotype is used, there must be a connected component ofG in

which the number of genotypes exceeds the number of non-trivial haplotypes that are used to

phase them. Hence, this connected component contains a clique inference cycle, a contradiction.

Theorem 10:Parsimony can be solved in polynomial time on a(∗, 2)-bounded clique instance.

Proof: First, observe that in a(∗, 2)-bounded clique instance, the genotypes comprising a

clique inference cycle of lengthk can be optimally phased usingk haplotypes. The algorithm

finds all clique inference cycles in the Clark-consistency graph; phases them optimally; and then

phases the remaining genotypes using the trivial haplotype and one additional haplotype for each

remaining genotype. The correctness of the algorithm follows from Lemmas 8 and 9.

The identification of clique inference cycles relies on Lemma 7, and is done by iterating the

following steps until all genotype pairs that share some haplotype have been processed:

(a) Choose two genotypesg1, g2 that share some haplotype.
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(b) Let h be the haplotype with 1 in positioni if and only if g1[i] = g2[i] = 2.

(c) Construct the clique inference path ofh.

(d) If this is a cycle, add the haplotypes found to the optimal solution and remove the genotypes

found from consideration.

V. BOUNDED TREEWIDTH GRAPHS

A graph G is said to havetreewidthk (cf. [2]) if G admits a cover{Xi}i∈I of its vertices

such that: (a)|Xi| ≤ k + 1 for all i; (b) for every edge(g, g′) of G, someXi contains bothg

andg′; and (c) the setsXi can be assigned to nodesi of a rooted binary treeT = (I, F ) such

that if j is on a path betweeni andk in T thenXi ∩Xk ⊆ Xj.

In this section we consider the case when the input instance gives rise to a Clark-consistency

graph with bounded treewidth. We shall present a polynomial dynamic-programming algorithm

for such graphs on enumerable input instances. We assume that the Clark-consistency graph is

connected, as otherwise we can operate on each connected component independently.

Theorem 11:There is a polynomial algorithm for PH on enumerable instances when the

Clark-consistency graph has bounded treewidth.

Proof: Since the input instance is enumerable, there areO(nc) haplotypes that are consistent

with any genotype in the input instance (for some constantc). Let G be a Clark-consistency graph

of bounded treewidth for the input instance. Thus,G admits a cover{Xi}i∈I of its vertices such

that a treeT on the setsXi has the properties described above. We give a dynamic programming

algorithm for PH onG. Let r be the root ofT . For a nodev, let v1 andv2 be its two children, and

let Xv denote the set of genotypes assigned to this node. We say that a multi-set of haplotypes

H resolvesa nodev if H = {h1, . . . , h|Xv |} and genotypei in Xv is consistent withhi.

Denote the optimum solution for the sub-instance induced by the genotypes in the subtree
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rooted atv by D(v). Denote byD(v, H) the optimum solution to this sub-instance for a multi-set

H that resolvesv.

Clearly,D(r) = minH D(r, H) whereH ranges over allO(nc(k+1)) multi-sets of haplotypes of

cardinality|Xr| that resolver. The following recursive formula can be used to computeD(r, H):

D(r, H) = min
H1,H2

{D(r1, H1) + D(r2, H2) + ∆(r, r1, r2, H,H1, H2)}

whereHi, i = 1, 2 resolvesri and agrees withH on the haplotypes explaining each genotype in

Xr ∩Xri
. ∆(r, r1, r2, H,H1, H2) is a correction factor: letx be the number of haplotypes that

are used in phasingXr1 ∩Xr2 according toH1 (or H2). Let y be the number of haplotypes that

are used to phaseXr \ (Xr1 ∪Xr2) according toH. Then∆(r, r1, r2, H, H1, H2) = y − x.

For a leafv at the base of the recursion,D(v, H) is defined as the number of distinct haplotypes

in the set composed of the haplotypes inH and their mates (with respect toXv). Thus,D(r)

can be computed using a bottom-up traversal of the treeT in polynomial time.

Lemma 12:Let G be the Clark-consistency graph of an enumerable input instance. Anyk

edges whose removal makesG of bounded treewidth can be used to approximate parsimony to

within an additive term ofk.

Proof: Suppose we are given a set ofk edges, whose removal makesG of bounded

treewidth. By removing those edges we can apply the above dynamic programming algorithm

to the resulting graph. Since each additional pair of genotypes that share a haplotype can reduce

the number of required haplotypes by at most 1, we obtain a solution with at mostopt + k

haplotypes, whereopt is the size of an optimum solution.

VI. B IPARTITE GRAPHS

In this section we study the parsimony problem when the Clark-consistency graph is bipartite.

We note that this implies that each haplotype can be shared by at most two genotypes. Hence,
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the lower bound on the cardinality of any solution is the number of genotypesn. We prove that

parsimony haplotyping on bipartite graphs is hard to approximate even in the case that the longest

inference path is of length 2. We complement this result by giving a polynomial algorithm for

the case that the longest inference path is of length 1, and an approximation algorithm for paths

of length greater than 1.

Theorem 13:Parsimony haplotyping is NP-hard when the Clark-consistency graph is bipartite

and the longest inference path is of length 2.

Proof: We reduce from 3DM3. Consider a 3DM3 instance with disjoint setsX, Y, Z

containingν elements each, and a setC = {c0, . . . , cµ−1} of µ triples in X × Y × Z. We

construct a PH instance with3ν + 3µ genotypes and6ν + 5µ SNPs.

For each elementxi ∈ X, yi ∈ Y , or zi ∈ Z we construct one genotype, whose non-zero

entries are (see Figure 6):

• xi[i] = 2; xi[3ν + i] = 1; xi[6ν + 5j] = 2 for every j such thatxi ∈ cj.

• yi[ν + i] = 2; yi[4ν + i] = 1; yi[6ν + 5j + 1] = 2 for every j such thatyi ∈ cj.

• zi[2ν + i] = 2; zi[5ν + i] = 1; zi[6ν + 5j + 2] = 2 for every j such thatzi ∈ cj.

For each triplecj ∈ C we create 3 genotypes, whose non-zero entries are:

• cx
j [3ν+i] = 2 for everyi such thatxi ∈ cj; cx

j [6ν+5j] = 1; cx
j [6ν+5j+2] = cx

j [6ν+5j+3] =

2.

• cy
j [4ν + i] = 2 for every i such thatyi ∈ cj; cy

j [5ν + i] = 2 for every i such thatzi ∈ cj;

cy
j [6ν + 5j + 1] = 1; cy

j [6ν + 5j + 2] = cy
j [6ν + 5j + 4] = 2.

• cz
j [5ν+i] = 2 for everyi such thatzi ∈ cj; cz

j [6ν+5j+2] = 1; cz
j [6ν+5j] = cz

j [6ν+5j+1] =

2.
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xi 2 0 0 1 0 0 2 0 0 0 0

yi 0 2 0 0 1 0 0 2 0 0 0

zi 0 0 2 0 0 1 0 0 2 0 0

cx 0 0 0 2 0 0 1 0 2 2 0

cy 0 0 0 0 2 2 0 1 2 0 2

cz 0 0 0 0 0 2 2 2 1 0 0

Fig. 6. Gadget for the reduction in the proof of Theorem 13.

The graph is bipartite as the genotypescz
j ,xi,yi can be assigned to one side of the bipartition,

and the genotypeszi, c
x
j , c

y
j can be assigned to the other side. The only possibilities for haplotype

sharing between genotypes are: (1)γ with cγ for γ ∈ {x, y, z}; and (2)cx or cy with cz. By

construction of columns6ν +5j and6ν +5j +1, if cz
j shares a haplotype with somezi, it cannot

share its complement withcx
j or cy

j . Thus, the longest haplotype inference path has length2.

Let A be the resulting genotype matrix. We claim thatA admits a phasing of size6ν +4µ−ω

if and only if C has a matching of sizeω. The proof is similar to that in Theorem 1 using the

phasing templates given in Figure 7.


(00010010010) ⊕ (00000010100)

(00000101100) ⊕ (00001001001)

(00000101100) ⊕ (00000010100)


P4

⇐=


(00020010220)

(00002201202)

(00000222100)


P6

=⇒


(00010010000) ⊕ (00000010110)

(00001001000) ⊕ (00000101101)

(00000100100) ⊕ (00000011100)


Fig. 7. The three matching genotypes corresponding to a triple in the proof of Theorem 13 and alternative phasings of these

genotypes.P4 show a minimal phasing with 4 haplotypes, none of which can be shared with the element genotypes.P6 shows

a phasing using 6 haplotypes, 3 of which can be shared with the element genotypes.

Corollary 3: Parsimony haplotyping is APX-hard when the Clark-consistency graph is bipar-

tite and the longest inference path is of length 2.
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We note that since a haplotype can be shared by at most two genotypes, any phasing will

give a 2-approximation to PH. The following two lemmas improve on this trivial ratio.

When the longest inference path is of length 1, one can reduce PH to a maximum matching

problem, giving rise to the following result:

Observation 1:If the length of the longest inference path is 1 then parsimony haplotyping

can be optimally solved in polynomial time.

For general bipartite graphs we can use this fact to devise a 1.5-approximation algorithm: (1)

Find a maximum matching in the Clark-consistency graph; (2) phase each genotype pair in the

matching using a shared haplotype; and (3) arbitrarily phase the remaining genotypes.

Lemma 14:The above algorithm gives a 1.5-approximation for PH on instances that induce

a bipartite Clark-consistency graph.

Proof: Consider an instance of PH with a bipartite Clark-consistency graphG. Let m be

the size of a maximum matching inG and letn be the number of genotypes. By definition, the

solution returned by the approximation algorithm will have size2n−m. Let T be an optimum

solution to the PH instance and letH be the subgraph ofG which contains an edge between

two genotypes if and only if they share a haplotype in the solution. Denote bye the number

of edges inH, i.e., e is the number of genotype pairs that share a haplotype in this solution.

Then |T | = 2n− e, and the approximation guarantee is2n−m
2n−e

≤ 2n−m
2n−2m

≤ 3
2
. The first inequality

follows from the fact that each vertex has degree at most 2 inH, and the second inequality

follows from the fact that2m ≤ n, and that the worst bound is obtained forn = m/2.

VII. C ONCLUSIONS

In this paper we have studied the complexity and approximability of parsimony haplotyping.

We have shown that the problem is APX-hard even in very restricted cases. On the positive side,



23

we have introduced a characterization of input instances by the Clark-consistency graphs they

induce, and identified classes of these graphs with specific structure of haplotype sharing, which

admit polynomial or constant-approximation algorithms.

Common methods for solving parsimony haplotyping include integer programming [12], [3],

which is often solved using a branch and bound approach, and direct branch and bound meth-

ods [27]. Our results may be of use when incorporated within these branch and bound procedures,

by terminating when the examined sub-instance has the characteristics of one of the problems

studied here. The sub-instance can then be efficiently solved using the algorithms we have

described.
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[13] B. V. Halldórsson, V. Bafna, N. Edwards, R. Lippert, S. Yooseph, and S. Istrail. A survey of computational methods for

determining haplotypes. InComputational Methods for SNPs and Haplotype Inference (LNCS 2983), pages 26–47, 2004.

[14] E. Halperin and E. Eskin. Haplotype reconstruction from genotype data using imperfect phylogeny.Bioinformatics,

20:1842–1849, 2004.
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